Autonomous penetration detection for bone cutting tool using demonstration-based learning

In orthopedic surgery, bone-cutting procedures are frequently performed. However, bone-cutting procedures are very risky in cases where vital organs or nerves exist beneath the target bones. In such cases, surgeons are required to determine the depth of the penetration into the bone by using only their haptic senses. Thus, we developed a handheld bone-cutting-tool system that detects the penetration of the cutting material. The developed system autonomously detects the penetration before total penetration and stops the actuation of the cutting tool, leaving a very thin remnant of work material. The developed system estimates the cutting resistance by using its motor's current and rotational speed. On the basis of data collected preoperatively, the system estimates the cutting state by using a support vector machine (SVM). According to the SVM outputs, the system detects the penetration of the work material and autonomously stops the actuation of the cutting tool. The proposed method was verified through experiments, and the results showed that the developed system successfully detected the penetrations of work materials and stopped autonomously immediately before total penetration. This study showed that the autonomous detection of bone penetration with a hand-held bone-cutting tool is feasible by using the proposed scheme.

[1]  Allison M. Okamura,et al.  Tissue property estimation and graphical display for teleoperated robot-assisted surgery , 2009, 2009 IEEE International Conference on Robotics and Automation.

[2]  M. Aizerman,et al.  Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning , 1964 .

[3]  Keyvan Hashtrudi-Zaad,et al.  Real-Time Identification of Hunt–Crossley Dynamic Models of Contact Environments , 2012, IEEE Transactions on Robotics.

[4]  Benedetto Allotta,et al.  Study on a mechatronic tool for drilling in the osteosynthesis of long bones: Tool/bone interaction, modeling and experiments , 1996 .

[5]  Murat Cenk Cavusoglu,et al.  Estimation of soft tissue mechanical parameters from robotic manipulation data , 2012, 2012 IEEE International Conference on Robotics and Automation.

[6]  Stefano Stramigioli,et al.  Contact impedance estimation for robotic systems , 2004, IEEE Transactions on Robotics.

[7]  Ping-Lang Yen,et al.  Bone cutting-through detection under imageless navigation , 2011, 2011 9th World Congress on Intelligent Control and Automation.

[8]  Jianwei Zhang,et al.  State Recognition of Pedicle Drilling With Force Sensing in a Robotic Spinal Surgical System , 2014, IEEE/ASME Transactions on Mechatronics.

[9]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[10]  O. Mangasarian,et al.  Robust linear programming discrimination of two linearly inseparable sets , 1992 .

[11]  Kaddour Bouazza-Marouf,et al.  The detection of drill bit break-through for the enhancement of safety in mechatronic assisted orthopaedic drilling , 1999 .