A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials
暂无分享,去创建一个
Julien Yvonnet | François Willot | Charles Toulemonde | Cyrille F. Dunant | Benoît Bary | Alain B. Giorla | Christophe Péniguel | Julien Sanahuja | Anh-Binh Tran | C. Péniguel | C. Toulemonde | J. Yvonnet | F. Willot | J. Sanahuja | A. Tran | B. Bary | Cyrille F. Dunant | Alain B. Giorla
[1] Stéphane Bordas,et al. An Algorithm to compute damage from load in composites , 2011 .
[2] Vinh Phu Nguyen,et al. Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software , 2007 .
[3] Jan Vorel,et al. Multiscale simulations of concrete mechanical tests , 2012, J. Comput. Appl. Math..
[4] R. Hill. Elastic properties of reinforced solids: some theoretical principles , 1963 .
[5] Christophe Péniguel,et al. LARGE SCALE FINITE ELEMENT THERMAL ANALYSIS OF THE BOLTS OF A FRENCH PWR CORE INTERNAL BAFFLE STRUCTURE , 2009 .
[6] I. Rupp,et al. Coupling heat conduction, radiation and convection in complex geometries , 1999 .
[7] Christian Huet,et al. Coupled size and boundary-condition effects in viscoelastic heterogeneous and composite bodies , 1999 .
[8] P. Wriggers,et al. Mesoscale models for concrete: homogenisation and damage behaviour , 2006 .
[9] Ted Belytschko,et al. Structured extended finite element methods for solids defined by implicit surfaces , 2002 .
[10] C. Toulemonde,et al. Numerical homogenization of concrete microstructures without explicit meshes , 2011 .
[11] T. Belytschko,et al. Blending in the extended finite element method by discontinuous Galerkin and assumed strain methods , 2008 .
[12] Z. M. Wang,et al. Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh , 1999 .
[13] Hervé Moulinec,et al. A computational scheme for linear and non‐linear composites with arbitrary phase contrast , 2001 .
[14] Cyrille F. Dunant,et al. Experimental and modelling study of the alkali-silica-reaction in concrete , 2009 .
[15] Tarek I. Zohdi,et al. Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids , 2004 .
[16] Dominique Jeulin,et al. Estimation of local stresses and elastic properties of a mortar sample by FFT computation of fields on a 3D image , 2011 .
[17] Peter Wriggers,et al. Aspects of the computational testing of the mechanical properties of microheterogeneous material samples , 2001 .
[18] Guillermo Etse,et al. Discontinuous bifurcation analysis in fracture energy-based gradient plasticity for concrete , 2012 .
[19] Peter Wriggers,et al. An Introduction to Computational Micromechanics , 2004 .
[20] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[21] P. P. Castañeda,et al. Infinite-contrast periodic composites with strongly nonlinear behavior: Effective-medium theory versus full-field simulations , 2009, 0906.1959.
[22] T. Belytschko,et al. MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .
[23] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[24] Pierre-Olivier Bouchard,et al. Development and validation of a 3D computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction , 2009 .
[25] E. Kröner. Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .
[26] D. Jeulin,et al. Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .
[27] S. Torquato. Random Heterogeneous Materials , 2002 .
[28] K. Tanaka,et al. Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .
[29] Renaud Masson,et al. Modeling the effective elastic behavior of composites: a mixed Finite Element and homogenisation approach , 2008 .
[30] Karen Scrivener,et al. Micro-mechanical modelling of alkali–silica-reaction-induced degradation using the AMIE framework , 2010 .
[31] F. Willot,et al. Fast Fourier Transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media , 2008, 0802.2488.
[32] Jean-François Remacle,et al. A computational approach to handle complex microstructure geometries , 2003 .
[33] Julien Yvonnet,et al. A multiple level set approach to prevent numerical artefacts in complex microstructures with nearby inclusions within XFEM , 2011 .
[34] K. Y. Dai,et al. Theoretical aspects of the smoothed finite element method (SFEM) , 2007 .
[35] Harm Askes,et al. Representative volume: Existence and size determination , 2007 .
[36] J. Mier,et al. Simple lattice model for numerical simulation of fracture of concrete materials and structures , 1992 .
[37] T. Fries. A corrected XFEM approximation without problems in blending elements , 2008 .
[38] Benoît Bary,et al. Numerical and analytical effective elastic properties of degraded cement pastes , 2009 .
[39] Peter Wriggers,et al. Computational homogenization of micro-structural damage due to frost in hardened cement paste , 2008 .
[40] H. Moulinec,et al. A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .
[41] Michel Fogli,et al. Apparent and effective mechanical properties of linear matrix-inclusion random composites: Improved bounds for the effective behavior , 2012 .