A simple parallel algorithm for the maximal independent set problem

Simple parallel algorithms for the maximal independent set (MIS) problem are presented. The first algorithm is a Monte Carlo algorithm with a very local property. The local property of this algorithm may make it a useful protocol design tool in distributed computing environments and artificial intelligence. One of the main contributions of this paper is the development of powerful and general techniques for converting Monte Carlo algorithms into deterministic algorithms. These techniques are used to convert the Monte Carlo algorithm for the MIS problem into a simple deterministic algorithm with the same parallel running time.

[1]  G. O'Brien Pairwise Independent Random Variables , 1980 .

[2]  Leslie M. Goldschlager A computational theory of higher brain function , 1984 .

[3]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[5]  A. Joffe On a Set of Almost Deterministic $k$-Independent Random Variables , 1974 .

[6]  A. Joffe,et al.  On a sequence of almost deterministic pairwise independent random variables , 1971 .

[7]  Michael Sipser,et al.  A complexity theoretic approach to randomness , 1983, STOC.

[8]  G. Lev,et al.  Size bounds and parallel algorithms for networks , 1980 .

[9]  Alon Itai,et al.  A Fast and Simple Randomized Parallel Algorithm for Maximal Matching , 1986, Inf. Process. Lett..

[10]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[11]  H. O. Lancaster Pairwise Statistical Independence , 1965 .

[12]  Richard M. Karp,et al.  A fast parallel algorithm for the maximal independent set problem , 1984, STOC '84.

[13]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[14]  P Erd,et al.  On the application of the borel-cantelli lemma , 1952 .

[15]  Michael Luby A Simple Parallel Algorithm for the Maximal Independent Set Problem , 1986, SIAM J. Comput..

[16]  Larry J. Stockmeyer,et al.  The complexity of approximate counting , 1983, STOC.

[17]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[18]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[19]  Noga Alon,et al.  A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.

[20]  R. L. Brooks On colouring the nodes of a network , 1941, Mathematical Proceedings of the Cambridge Philosophical Society.

[21]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[22]  John K. Tsotsos Representational axes and temporal cooperative processes , 1987 .