An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems

Nonconforming domain decomposition methods provide a powerful tool for the numerical approximation of partial differential equations. For the discretization of a nonlinear multibody contact problem, we use linear mortar finite elements based on dual Lagrange multipliers. Under some regularity assumptions on the solution, an optimal convergence order of $h^{0.5+\nu}$, $0<\nu\leq 0.5$, can be established in two dimensions (2D) and three dimensions (3D). Compared with a standard linear saddle point formulation, two additional terms which provide a measure for the nonconformity and the nonlinearity of the approach have to be taken in account. Numerical examples illustrating the performance of the nonconforming method and confirming our theoretical result are presented.

[1]  Barbara Wohlmuth,et al.  A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems , 2005 .

[2]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[3]  Zdeněk Dostál,et al.  Solution of Coercive and Semicoercive Contact Problems by FETI Domain Decomposition , 1998 .

[4]  Z. Dostál,et al.  Solution of contact problems by FETI domain decomposition with natural coarse space projections , 2000 .

[5]  Barbara I. Wohlmuth,et al.  Discretization Methods and Iterative Solvers Based on Domain Decomposition , 2001, Lecture Notes in Computational Science and Engineering.

[6]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[7]  R. S. Falk Error estimates for the approximation of a class of variational inequalities , 1974 .

[8]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[9]  Peter Wriggers,et al.  Adaptive Finite Elements for Elastic Bodies in Contact , 1999, SIAM J. Sci. Comput..

[10]  William W. Hager,et al.  Error estimates for the finite element solution of variational inequalities , 1978 .

[11]  Guy Bayada,et al.  Algorithme de Neumann–Dirichlet pour des problèmes de contact unilatéral : Résultat de convergence , 2002 .

[12]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[13]  R. Glowinski Lectures on Numerical Methods for Non-Linear Variational Problems , 1981 .

[14]  Rolf Krause,et al.  Monotone Multigrid Methods on Nonmatching Grids for Nonlinear Multibody Contact Problems , 2003, SIAM J. Sci. Comput..

[15]  F. B. Belgacem,et al.  EXTENSION OF THE MORTAR FINITE ELEMENT METHOD TO A VARIATIONAL INEQUALITY MODELING UNILATERAL CONTACT , 1999 .

[16]  D. Kinderlehrer,et al.  Existence, uniqueness, and regularity results for the two-body contact problem , 1987 .

[17]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[18]  Faker Ben Belgacem,et al.  Numerical Simulation of Some Variational Inequalities Arisen from Unilateral Contact Problems by the Finite Element Methods , 2000, SIAM J. Numer. Anal..

[19]  Rolf Krause,et al.  Monotone Multigrid Methods for Signorini's Problem with Friction , 2001 .

[20]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[21]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[22]  Barbara Wohlmuth A COMPARISON OF DUAL LAGRANGE MULTIPLIER SPACES FOR MORTAR FINITE ELEMENT DISCRETIZATIONS , 2002 .

[23]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[24]  Barbara Wohlmuth,et al.  CONVERGENCE OF A CONTACT-NEUMANN ITERATION FOR THE SOLUTION OF TWO-BODY CONTACT PROBLEMS , 2003 .

[25]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[26]  David Horák,et al.  Scalability and FETI based algorithm for large discretized variational inequalities , 2003, Math. Comput. Simul..

[27]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[28]  R. Krause,et al.  A Dirichlet–Neumann type algorithm for contact problems with friction , 2002 .

[29]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[30]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..