The influence of cell geometry on the Godunov scheme applied to the linear wave equation

By studying the structure of the discrete kernel of the linear acoustic operator discretized with a Godunov scheme, we clearly explain why the behaviour of the Godunov scheme applied to the linear wave equation deeply depends on the space dimension and, especially, on the type of mesh. This approach allows us to explain why, in the periodic case, the Godunov scheme applied to the resolution of the compressible Euler or Navier-Stokes system is accurate at low Mach number when the mesh is triangular or tetrahedral and is not accurate when the mesh is a 2D (or 3D) cartesian mesh. This approach confirms also the fact that a Godunov scheme remains accurate when it is modified by simply centering the discretization of the pressure gradient.

[1]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[2]  Ephane Dellacherie,et al.  CHECKERBOARD MODES AND WAVE EQUATION , 2009 .

[3]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[4]  S. Clerc,et al.  Numerical Simulation of the Homogeneous Equilibrium Model for Two-Phase Flows , 2000 .

[5]  R. Nicolaides Analysis and convergence of the MAC scheme. I : The linear problem , 1992 .

[6]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[7]  Thierry BuÄard A sequel to a rough Godunov scheme: application to real gases , 2000 .

[8]  Chun-wei Gu,et al.  Development of Roe-type scheme for all-speed flows based on preconditioning method , 2009 .

[9]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.

[10]  Georg Bader,et al.  The influence of cell geometry on the accuracy of upwind schemes in the low mach number regime , 2009, J. Comput. Phys..

[11]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[12]  R. J. R. Williams,et al.  An improved reconstruction method for compressible flows with low Mach number features , 2008, J. Comput. Phys..

[13]  Meng-Sing Liou,et al.  A Sequel to AUSM : AUSM 1 , 1996 .

[14]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[15]  X. Wu,et al.  Analysis and convergence of the MAC scheme. II. Navier-Stokes equations , 1996, Math. Comput..

[16]  Hervé Guillard On the behavior of upwind schemes in the low Mach number limit. IV: P0 approximation on triangular and tetrahedral cells , 2009 .

[17]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[18]  Hervé Guillard,et al.  Behavior of upwind scheme in the low Mach number limit: III. Preconditioned dissipation for a five equation two phase model , 2008 .

[19]  P. Sagaut,et al.  Large Eddy Simulation of Flow Around an Airfoil Near Stall , 2002 .

[20]  R. Nicolaides Direct discretization of planar div-curl problems , 1992 .

[21]  Stéphane Dellacherie,et al.  Analysis of Godunov type schemes applied to the compressible Euler system at low Mach number , 2010, J. Comput. Phys..

[22]  V. Guinot Approximate Riemann Solvers , 2010 .

[23]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[24]  S. Schochet Fast Singular Limits of Hyperbolic PDEs , 1994 .

[25]  Xue-song Li,et al.  An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour , 2008, J. Comput. Phys..

[26]  Thierry Gallouët,et al.  On an Approximate Godunov Scheme , 1999 .

[27]  Ben Thornber,et al.  Numerical dissipation of upwind schemes in low Mach flow , 2008 .

[28]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .