Laser characteristics at 1535 nm and thermal effects of an Er : Yb phosphate glass microchip pumped by Ti : sapphire laser

An Er:Yb codoped phosphate glass microchip laser has been studied under pumping with a Ti:sapphire laser ranging from 945 to 990 nm. The characteristics (threshold, slope efficiency) are first described for an optimized laser. The gain spectrum is calculated for the transition 4I13/2→4I15/2 around 1535 nm from fundamental spectroscopic data and from experimental results. Red-shift effect on the frequency of a single mode is experimentally observed when the pump power is increased, originating from thermal effects. Temperature inside the microchip cavity and thermal expansion coefficient were determined by employing the intensity ratio of two green upconversion emission line centered at 530 and 554 nm, respectively, which quantitatively explain this red shift.

[1]  Younes Messaddeq,et al.  Frequency upconversion in Er3+/Yb3+-codoped chalcogenide glass , 1998 .

[2]  H.W.H. Lee Intra-stark relaxation of Nd3+ in silicate glass: Subpicosecond accumulated photon echo experiments , 1990 .

[3]  Nunes,et al.  Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses. , 1996, Physical review. B, Condensed matter.

[4]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[5]  Stephen A. Payne,et al.  Direct measurements of the terminal laser level lifetime in neodymium-doped crystals and glasses , 1995 .

[6]  Cesare Svelto,et al.  Erbium–ytterbium microlasers: optical properties and lasing characteristics , 1999 .

[7]  F. Auzel,et al.  Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate , 2001 .

[8]  CHARACTERIZATION OF ER3+-DOPED GLASSES BY FLUORESCENCE LINE NARROWING , 1991 .

[9]  Michel J. F. Digonnet,et al.  Rare earth doped fiber lasers and amplifiers , 1993 .

[10]  R. S. Quimby,et al.  General procedure for the analysis of Er(3+) cross sections. , 1991, Optics letters.

[11]  F. Auzel Contribution a l’étude spectroscopique de verres dopés avec Er3+ pour obtenir l’effet laser , 1969 .

[12]  A. S. Gouveia-Neto,et al.  Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass , 1998 .

[13]  E. A. Gouveia,et al.  Thermal effect on multiphonon-assisted anti-Stokes excited upconversion fluorescence emission in Yb3+-sensitized Er3+-doped optical fiber , 2000 .

[14]  G. Baxter,et al.  Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers. , 1994, Optics letters.

[15]  W. A. Sibley,et al.  Optical transitions of Er 3 + ions in fluorozirconate glass , 1983 .

[16]  M. J. Weber,et al.  Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass , 1977 .

[17]  Stefano Taccheo,et al.  Analysis and modelling of the erbium-ytterbium glass laser , 1993 .

[18]  Gregory W Baxter,et al.  High dynamic range temperature point sensor using green fluorescence intensity ratio in erbium-doped silica fiber , 1995 .

[19]  H. Saito,et al.  Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm , 1993 .

[20]  H Berthou,et al.  Optical-fiber temperature sensor based on upconversion-excited fluorescence. , 1990, Optics letters.

[21]  D. Cronin,et al.  Dependence of the stimulated emission cross section of Yb 3+ on host glass composition , 1983 .

[22]  Cesare Svelto,et al.  Widely tunable single‐frequency erbium–ytterbium phosphate glass laser , 1996 .

[23]  J R Simpson,et al.  Evaluation of (4)I(15/2) and (4)I(13/2) Stark-level energies in erbium-doped aluminosilicate glass fibers. , 1990, Optics letters.