Analysis of the Influence of Stylized-CIFAR10 Dataset on ResNet

[1]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Matthias Bethge,et al.  Generalisation in humans and deep neural networks , 2018, NeurIPS.

[3]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[4]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Leon A. Gatys,et al.  Image Style Transfer Using Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Leon A. Gatys,et al.  Synthesising Dynamic Textures using Convolutional Neural Networks , 2017, ArXiv.

[7]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[8]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[9]  Jonas Kubilius,et al.  Deep Neural Networks as a Computational Model for Human Shape Sensitivity , 2016, PLoS Comput. Biol..

[10]  Lauren E. Welbourne,et al.  Humans, but Not Deep Neural Networks, Often Miss Giant Targets in Scenes , 2017, Current Biology.

[11]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[12]  Samuel Ritter,et al.  Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study , 2017, ICML.