A fast solver of the shallow water equations on a sphere using a combined compact difference scheme

[1]  Philip E. Merilees,et al.  The pseudospectral approximation applied to the shallow water equations on a sphere , 1973 .

[2]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[3]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[4]  J. Hack,et al.  Spectral transform solutions to the shallow water test set , 1995 .

[5]  Bengt Fornberg,et al.  A Pseudospectral Approach for Polar and Spherical Geometries , 1995, SIAM J. Sci. Comput..

[6]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .

[7]  Nikolaus A. Adams,et al.  A High-Resolution Hybrid Compact-ENO Scheme for Shock-Turbulence Interaction Problems , 1996 .

[8]  Krishnan Mahesh,et al.  High order finite difference schemes with good spectral resolution , 1997 .

[9]  Shian-Jiann Lin,et al.  An explicit flux‐form semi‐lagrangian shallow‐water model on the sphere , 1997 .

[10]  P. Chu,et al.  A Three-Point Combined Compact Difference Scheme , 1998 .

[11]  P. Swarztrauber,et al.  Fast Shallow-Water Equation Solvers in Latitude-Longitude Coordinates , 1998 .

[12]  Marcelo H. Kobayashi,et al.  Regular Article: On a Class of Padé Finite Volume Methods , 1999 .

[13]  J. S. Shang,et al.  High-Order Compact-Difference Schemes for Time-Dependent Maxwell Equations , 1999 .

[14]  H. Fasel,et al.  A Compact-Difference Scheme for the Navier—Stokes Equations in Vorticity—Velocity Formulation , 2000 .

[15]  R. Hixon Prefactored small-stencil compact schemes , 2000 .

[16]  Hyeong-Bin Cheong,et al.  Double Fourier Series on a Sphere , 2000 .

[17]  Application of double Fourier series to the shallow-water equations on a sphere , 2000 .