KSD Aggregated Goodness-of-fit Test

We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide non-asymptotic guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. For compactly supported densities with bounded model score function, we derive the rate for KSDAgg over restricted Sobolev balls; this rate corresponds to the minimax optimal rate over unrestricted Sobolev balls, up to an iterated logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art quadratic-time adaptive KSD-based goodness-of-fit testing procedures.

[1]  G. Reinert,et al.  On RKHS Choices for Assessing Graph Generators via Kernel Stein Statistics , 2022, ArXiv.

[2]  F. Briol,et al.  Towards Healing the Blindness of Score Matching , 2022, ArXiv.

[3]  Tamara Fern'andez,et al.  A general framework for the analysis of kernel-based tests , 2022, 2209.00124.

[4]  A. Gretton,et al.  Efficient Aggregated Kernel Tests using Incomplete U-statistics , 2022, NeurIPS.

[5]  A. Duncan,et al.  A Fourier representation of kernel Stein discrepancy with application to Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces , 2022, 2206.04552.

[6]  G. Reinert,et al.  A Kernelised Stein Statistic for Assessing Implicit Generative Models , 2022, NeurIPS.

[7]  G. Reinert,et al.  AgraSSt: Approximate Graph Stein Statistics for Interpretable Assessment of Implicit Graph Generators , 2022, NeurIPS.

[8]  A. Gretton,et al.  Composite Goodness-of-fit Tests with Kernels , 2021, ArXiv.

[9]  B. Laurent,et al.  MMD Aggregated Two-Sample Test , 2021, J. Mach. Learn. Res..

[10]  Wenkai Xu Standardisation-function Kernel Stein Discrepancy: A Unifying View on Kernel Stein Discrepancy Tests for Goodness-of-fit , 2021, AISTATS.

[11]  Pierre-Cyril Aubin-Frankowski,et al.  Kernel Stein Discrepancy Descent , 2021, ICML.

[12]  Takeru Matsuda,et al.  Interpretable Stein Goodness-of-fit Tests on Riemannian Manifold , 2021, ICML.

[13]  Jonas M. Kubler,et al.  A Witness Two-Sample Test , 2021, AISTATS.

[14]  M. Yamada,et al.  Post-selection inference with HSIC-Lasso , 2020, ICML.

[15]  A. Duncan,et al.  A Kernel Two-Sample Test for Functional Data , 2020, J. Mach. Learn. Res..

[16]  Heishiro Kanagawa,et al.  Blindness of score-based methods to isolated components and mixing proportions , 2020, 2008.10087.

[17]  Arthur Gretton,et al.  Kernelized Stein Discrepancy Tests of Goodness-of-fit for Time-to-Event Data , 2020, ICML.

[18]  Jonas M. Kubler,et al.  Learning Kernel Tests Without Data Splitting , 2020, NeurIPS.

[19]  L. Wasserman,et al.  Minimax optimality of permutation tests , 2020, The Annals of Statistics.

[20]  Bernhard Schölkopf,et al.  Testing Goodness of Fit of Conditional Density Models with Kernels , 2020, UAI.

[21]  Feng Liu,et al.  Learning Deep Kernels for Non-Parametric Two-Sample Tests , 2020, ICML.

[22]  Takeru Matsuda,et al.  A Stein Goodness-of-fit Test for Directional Distributions , 2020, AISTATS.

[23]  Richard Zemel,et al.  Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models without Sampling , 2020, ICML.

[24]  Bernhard Schölkopf,et al.  Kernel Stein Tests for Multiple Model Comparison , 2019, NeurIPS.

[25]  Jen Ning Lim,et al.  More Powerful Selective Kernel Tests for Feature Selection , 2019, AISTATS.

[26]  B. Laurent,et al.  Adaptive test of independence based on HSIC measures , 2019, The Annals of Statistics.

[27]  M. Yuan,et al.  On the Optimality of Gaussian Kernel Based Nonparametric Tests against Smooth Alternatives , 2019, 1909.03302.

[28]  Kenji Fukumizu,et al.  A Kernel Stein Test for Comparing Latent Variable Models , 2019, Journal of the Royal Statistical Society Series B: Statistical Methodology.

[29]  Alessandro Barp,et al.  Minimum Stein Discrepancy Estimators , 2019, NeurIPS.

[30]  Bernhard Schölkopf,et al.  Informative Features for Model Comparison , 2018, NeurIPS.

[31]  Arthur Gretton,et al.  A maximum-mean-discrepancy goodness-of-fit test for censored data , 2018, AISTATS.

[32]  Prafulla Dhariwal,et al.  Glow: Generative Flow with Invertible 1x1 Convolutions , 2018, NeurIPS.

[33]  Lester Mackey,et al.  Random Feature Stein Discrepancies , 2018, NeurIPS.

[34]  Kenji Fukumizu,et al.  Post Selection Inference with Incomplete Maximum Mean Discrepancy Estimator , 2018, ICLR.

[35]  Krishnakumar Balasubramanian,et al.  On the Optimality of Kernel-Embedding Based Goodness-of-Fit Tests , 2017, J. Mach. Learn. Res..

[36]  Kenji Fukumizu,et al.  A Linear-Time Kernel Goodness-of-Fit Test , 2017, NIPS.

[37]  Lester W. Mackey,et al.  Measuring Sample Quality with Kernels , 2017, ICML.

[38]  Bernhard Schölkopf,et al.  Minimax Estimation of Maximum Mean Discrepancy with Radial Kernels , 2016, NIPS.

[39]  Alexander J. Smola,et al.  Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy , 2016, ICLR.

[40]  Samy Bengio,et al.  Density estimation using Real NVP , 2016, ICLR.

[41]  M. Girolami,et al.  Convergence rates for a class of estimators based on Stein’s method , 2016, Bernoulli.

[42]  Qiang Liu,et al.  A Kernelized Stein Discrepancy for Goodness-of-fit Tests , 2016, ICML.

[43]  Arthur Gretton,et al.  A Kernel Test of Goodness of Fit , 2016, ICML.

[44]  Lester W. Mackey,et al.  Measuring Sample Quality with Stein's Method , 2015, NIPS.

[45]  M. Girolami,et al.  Control Functionals for Quasi-Monte Carlo Integration , 2015, AISTATS.

[46]  Arthur Gretton,et al.  A Wild Bootstrap for Degenerate Kernel Tests , 2014, NIPS.

[47]  Anne Leucht,et al.  Dependent wild bootstrap for degenerate U- and V-statistics , 2013, J. Multivar. Anal..

[48]  Sivaraman Balakrishnan,et al.  Optimal kernel choice for large-scale two-sample tests , 2012, NIPS.

[49]  Matthieu Lerasle,et al.  Kernels Based Tests with Non-asymptotic Bootstrap Approaches for Two-sample Problems , 2012, COLT.

[50]  A. Leucht,et al.  Degenerate U- and V-statistics under weak dependence : Asymptotic theory and bootstrap consistency , 2012, 1205.1892.

[51]  B. Laurent,et al.  The two-sample problem for Poisson processes: adaptive tests with a non-asymptotic wild bootstrap approach , 2012, 1203.3572.

[52]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[53]  Kenji Fukumizu,et al.  Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..

[54]  X. Shao,et al.  The Dependent Wild Bootstrap , 2010 .

[55]  C. Carmeli,et al.  Vector valued reproducing kernel Hilbert spaces and universality , 2008, 0807.1659.

[56]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[57]  Joseph P. Romano,et al.  Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing , 2003 .

[58]  Y. Baraud Non-asymptotic minimax rates of testing in signal detection , 2002 .

[59]  Yu. I. Ingster Minimax testing of the hypothesis of independence for ellipsoids inlp , 1996 .

[60]  W. Stute,et al.  Bootstrap based goodness-of-fit-tests , 1993 .

[61]  Stefun D. Leigh U-Statistics Theory and Practice , 1992 .

[62]  P. Massart The Tight Constant in the Dvoretzky-Kiefer-Wolfowitz Inequality , 1990 .

[63]  Yu. I. Ingster Minimax Testing of Nonparametric Hypotheses on a Distribution Density in the $L_p$ Metrics , 1987 .

[64]  J. Kiefer,et al.  Asymptotic Minimax Character of the Sample Distribution Function and of the Classical Multinomial Estimator , 1956 .

[65]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[66]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[67]  Wenkai Xu,et al.  Generalised Kernel Stein Discrepancy (GKSD): A Unifying Approach for Non-parametric Goodness-of-fit Testing , 2021 .

[68]  Gesine Reinert,et al.  A Stein Goodness-of-test for Exponential Random Graph Models , 2021, AISTATS.

[69]  Gesine Reinert,et al.  Stein’s Method Meets Statistics: A Review of Some Recent Developments , 2021 .

[70]  M. Frei Decoupling From Dependence To Independence , 2016 .

[71]  P. Diaconis,et al.  Use of exchangeable pairs in the analysis of simulations , 2004 .

[72]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[73]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[74]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .