Role of STARD4 in sterol transport between the endocytic recycling compartment and the plasma membrane

The kinetics of sterol transport between the plasma membrane and the endocytic recycling compartment is measured using fluorescence microscopy. STARD4, a small, soluble sterol transport protein, is responsible for 25% of the total transport and 33% of nonvesicular transport. Elevated cholesterol dramatically increases sterol transport rate constants.

[1]  F. Maxfield,et al.  STARD4 Membrane Interactions and Sterol Binding , 2015, Biochemistry.

[2]  F. Maxfield,et al.  Cholesterol trafficking and distribution. , 2015, Essays in biochemistry.

[3]  J. Goldstein,et al.  Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis , 2014, eLife.

[4]  T. Balla,et al.  A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi , 2014, The Journal of cell biology.

[5]  F. Maxfield,et al.  STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC , 2012, Journal of Lipid Research.

[6]  B. J. Clark,et al.  The mammalian START domain protein family in lipid transport in health and disease. , 2012, The Journal of endocrinology.

[7]  K. Kozminski,et al.  A Detour for Yeast Oxysterol Binding Proteins* , 2012, The Journal of Biological Chemistry.

[8]  Daniel Wüstner,et al.  Analysis of cholesterol trafficking with fluorescent probes. , 2012, Methods in cell biology.

[9]  F. Maxfield,et al.  STARD4 abundance regulates sterol transport and sensing , 2011, Molecular biology of the cell.

[10]  P. Hylemon,et al.  Subcellular localization and regulation of StarD4 protein in macrophages and fibroblasts. , 2011, Biochimica et biophysica acta.

[11]  F. Maxfield,et al.  Degradation of Alzheimer's amyloid fibrils by microglia requires delivery of ClC-7 to lysosomes , 2011, Molecular biology of the cell.

[12]  T. Steck,et al.  Cell cholesterol homeostasis: mediation by active cholesterol. , 2010, Trends in cell biology.

[13]  Kai Simons,et al.  Revitalizing membrane rafts: new tools and insights , 2010, Nature Reviews Molecular Cell Biology.

[14]  G. Salido,et al.  Lipid rafts modulate the activation but not the maintenance of store-operated Ca(2+) entry. , 2010, Biochimica et biophysica acta.

[15]  Marc P. Waase,et al.  Targeted disruption of steroidogenic acute regulatory protein D4 leads to modest weight reduction and minor alterations in lipid metabolism[S] , 2010, Journal of Lipid Research.

[16]  F. Maxfield,et al.  Endocytosis of beta-cyclodextrins is responsible for cholesterol reduction in Niemann-Pick type C mutant cells , 2010, Proceedings of the National Academy of Sciences.

[17]  D. Sahlender,et al.  Rapid Inactivation of Proteins by Rapamycin-Induced Rerouting to Mitochondria , 2010, Developmental cell.

[18]  F. Maxfield,et al.  Intracellular sterol dynamics. , 2009, Biochimica et biophysica acta.

[19]  J. McDonald,et al.  Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. , 2008, Cell metabolism.

[20]  Brij B. Singh,et al.  Lipid Rafts Determine Clustering of STIM1 in Endoplasmic Reticulum-Plasma Membrane Junctions and Regulation of Store-operated Ca2+ Entry (SOCE)* , 2008, Journal of Biological Chemistry.

[21]  W. Prinz Non-vesicular sterol transport in cells. , 2007, Progress in lipid research.

[22]  Raphael Zidovetzki,et al.  Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. , 2007, Biochimica et biophysica acta.

[23]  F. Maxfield,et al.  Sterol, Protein and Lipid Trafficking in Chinese Hamster Ovary Cells with Niemann‐Pick Type C1 Defect , 2007, Traffic.

[24]  F. Maxfield,et al.  Intracellular sterol transport and distribution. , 2006, Current opinion in cell biology.

[25]  F. Maxfield,et al.  Sterol and lipid trafficking in mammalian cells. , 2006, Biochemical Society transactions.

[26]  Rachel M. Adams,et al.  Differential Gene Regulation of StarD4 and StarD5 Cholesterol Transfer Proteins , 2005, Journal of Biological Chemistry.

[27]  G. van Meer,et al.  Membrane lipids and vesicular traffic. , 2004, Current opinion in cell biology.

[28]  M. Kessels,et al.  Syndapins integrate N‐WASP in receptor‐mediated endocytosis , 2002, The EMBO journal.

[29]  T. Steck,et al.  Probing red cell membrane cholesterol movement with cyclodextrin. , 2002, Biophysical journal.

[30]  F. Maxfield,et al.  Intracellular cholesterol transport , 2002, The Journal of clinical investigation.

[31]  Rachel M. Adams,et al.  The cholesterol-regulated StarD4 gene encodes a StAR-related lipid transfer protein with two closely related homologues, StarD5 and StarD6 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  F. Maxfield,et al.  Vesicular and Non-vesicular Sterol Transport in Living Cells , 2002, The Journal of Biological Chemistry.

[33]  F. Maxfield,et al.  Characterization of Rapid Membrane Internalization and Recycling* , 2000, The Journal of Biological Chemistry.

[34]  B. Baird,et al.  Critical Role for Cholesterol in Lyn-mediated Tyrosine Phosphorylation of FcεRI and Their Association with Detergent-resistant Membranes , 1999, The Journal of cell biology.

[35]  G. Feigenson,et al.  A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. , 1999, Biophysical journal.

[36]  F. Maxfield,et al.  Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog. , 1998, Biophysical journal.

[37]  T. Steck,et al.  Quantitation of the Pool of Cholesterol Associated with Acyl-CoA:Cholesterol Acyltransferase in Human Fibroblasts* , 1997, The Journal of Biological Chemistry.

[38]  F. Schroeder,et al.  Spontaneous and Protein-mediated Sterol Transfer between Intracellular Membranes* , 1996, The Journal of Biological Chemistry.

[39]  W. J. Johnson,et al.  Cellular Cholesterol Efflux Mediated by Cyclodextrins , 1996, The Journal of Biological Chemistry.

[40]  W. J. Johnson,et al.  Cellular Cholesterol Efflux Mediated by Cyclodextrins (*) , 1995, The Journal of Biological Chemistry.

[41]  S. Mayor,et al.  Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process , 1993, The Journal of cell biology.

[42]  L. Liscum,et al.  Intracellular cholesterol transport. , 1992, Journal of lipid research.

[43]  I. Tabas,et al.  Lipoproteins activate acyl-coenzyme A:cholesterol acyltransferase in macrophages only after cellular cholesterol pools are expanded to a critical threshold level. , 1991, Journal of Biological Chemistry.

[44]  R. D. Simoni,et al.  Cholesterol and vesicular stomatitis virus G protein take separate routes from the endoplasmic reticulum to the plasma membrane. , 1990, The Journal of biological chemistry.

[45]  W. J. Johnson,et al.  Mechanisms and consequences of cellular cholesterol exchange and transfer. , 1987, Biochimica et biophysica acta.

[46]  F. Schroeder,et al.  Δ5,7,9(11)-cholestatrien-3β-ol: A fluorescent cholesterol analogue , 1984 .

[47]  Y. Lange,et al.  The rate of transmembrane movement of cholesterol in the human erythrocyte. , 1981, The Journal of biological chemistry.