Stress-driven nonlocal integral elasticity for axisymmetric nano-plates

[1]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[2]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[3]  E. Aifantis On the role of gradients in the localization of deformation and fracture , 1992 .

[4]  K. A. Lazopoulos,et al.  On the gradient strain elasticity theory of plates , 2004 .

[5]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[6]  D. E. Beskos,et al.  Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates , 2008 .

[7]  D. Pedroso,et al.  Strain gradient theory in orthogonal curvilinear coordinates , 2008 .

[8]  K. Lazopoulos On bending of strain gradient elastic micro-plates , 2009 .

[9]  D. Caillerie,et al.  Analytical solutions for the thick-walled cylinder problem modeled with an isotropic elastic second gradient constitutive equation , 2009 .

[10]  A. Giannakopoulos,et al.  Variational analysis of gradient elastic flexural plates under static loading , 2010 .

[11]  Jeremy Ramsden,et al.  Nanotechnology: An Introduction , 2011 .

[12]  S. M. Mousavi,et al.  Analysis of plate in second strain gradient elasticity , 2014 .

[13]  A. Lazopoulos,et al.  Axisymmetric bending of strain gradient elastic circular thin plates , 2015 .

[14]  J. N. Reddy,et al.  Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved , 2016 .

[15]  R. Luciano,et al.  Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation , 2016 .

[16]  Raffaele Barretta,et al.  Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler–Bernoulli and Timoshenko beams” by Meral Tuna & Mesut Kirca , 2016 .

[17]  Luciano Feo,et al.  Application of an enhanced version of the Eringen differential model to nanotechnology , 2016 .

[18]  M. Barati,et al.  A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates , 2016 .

[19]  M. Rahaeifard,et al.  On the mechanics of laminated microplates , 2017 .

[20]  Li Li,et al.  Closed form solution for a nonlocal strain gradient rod in tension , 2017 .

[21]  H. Dai,et al.  Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model , 2017 .

[22]  Fuh-Gwo Yuan,et al.  On buckling and postbuckling behavior of nanotubes , 2017 .

[23]  Xueliang Fan,et al.  Nonlocal vibrations and stabilities in parametric resonance of axially moving viscoelastic piezoelectric nanoplate subjected to thermo-electro-mechanical forces , 2017 .

[24]  Raffaele Barretta,et al.  Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams , 2017 .

[25]  M. Azhari,et al.  Buckling and free vibration of the FGM thin micro-plate based on the modified strain gradient theory and the spline finite strip method , 2017 .

[26]  Pramod S. Patil,et al.  Sensitive and selective NO2 gas sensor based on WO3 nanoplates , 2017 .

[27]  Li Li,et al.  On longitudinal dynamics of nanorods , 2017 .

[28]  R. Barretta,et al.  On nonlocal integral models for elastic nano-beams , 2017 .

[29]  Raffaele Barretta,et al.  Application of gradient elasticity to armchair carbon nanotubes: Size effects and constitutive parameters assessment , 2017 .

[30]  Mergen H. Ghayesh,et al.  Nonlinear oscillations of viscoelastic microplates , 2017 .

[31]  Shenjie Zhou,et al.  A comparison of strain gradient theories with applications to the functionally graded circular micro-plate , 2017 .

[32]  Ramón Zaera,et al.  Vibrations of Bernoulli-Euler beams using the two-phase nonlocal elasticity theory , 2017 .

[33]  Ö. Civalek,et al.  On the analysis of microbeams , 2017 .

[34]  Raffaele Barretta,et al.  Nonlocal elasticity in nanobeams: the stress-driven integral model , 2017 .

[35]  High resolution mass identification using nonlinear vibrations of nanoplates , 2017 .

[36]  Lu Lu,et al.  Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory , 2017 .

[37]  R. Luciano,et al.  A closed-form model for torsion of nanobeams with an enhanced nonlocal formulation , 2017 .

[38]  S. Hosseini-Hashemi,et al.  Dynamic response of biaxially loaded double-layer viscoelastic orthotropic nanoplate system under a moving nanoparticle , 2017 .

[39]  Hyungtak Seo,et al.  Pd on MoO3 nanoplates as small-polaron-resonant eye-readable gasochromic and electrical hydrogen sensor , 2017 .

[40]  R. Barretta,et al.  Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams , 2017 .

[41]  R. Luciano,et al.  Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers , 2017 .

[42]  M. Barati,et al.  Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids , 2017 .

[43]  Y. Nakashima,et al.  Method for measuring Young's modulus of cells using a cell compression microdevice , 2017 .

[44]  Hossein Shahverdi,et al.  Vibration analysis of porous functionally graded nanoplates , 2017 .

[45]  R. Luciano,et al.  Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model , 2017 .

[46]  S. Hosseini-Hashemi,et al.  Application of the generalized Hooke's law for viscoelastic materials (GHVMs) in nanoscale mass sensing applications of viscoelastic nanoplates: A theoretical study , 2018 .

[47]  F. Yuan,et al.  On vibrations of porous nanotubes , 2018 .

[48]  Luciano Feo,et al.  Stress-driven integral elastic theory for torsion of nano-beams , 2018 .

[49]  M. Ghayesh Dynamics of functionally graded viscoelastic microbeams , 2018 .

[50]  S. Ali Faghidian,et al.  On non-linear flexure of beams based on non-local elasticity theory , 2018 .

[51]  Lu Lu,et al.  On the mechanics of Kirchhoff and Mindlin plates incorporating surface energy , 2018 .

[52]  Y. Solyaev,et al.  Revisiting bending theories of elastic gradient beams , 2018 .

[53]  M. Ghayesh,et al.  On the dynamics of imperfect shear deformable microplates , 2018, International Journal of Engineering Science.

[54]  E. Taati On buckling and post-buckling behavior of functionally graded micro-beams in thermal environment , 2018, International Journal of Engineering Science.

[55]  R. Luciano,et al.  Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours , 2018 .

[56]  S. Ali Faghidian,et al.  Integro-differential nonlocal theory of elasticity , 2018, International Journal of Engineering Science.

[57]  S. A. Fazelzadeh,et al.  Nonlocal inflected nano-beams: A stress-driven approach of bi-Helmholtz type , 2018, Composite Structures.

[58]  S. Ali Faghidian,et al.  Reissner stationary variational principle for nonlocal strain gradient theory of elasticity , 2018, European Journal of Mechanics - A/Solids.

[59]  A. Farajpour,et al.  A review on the mechanics of nanostructures , 2018, International Journal of Engineering Science.

[60]  M. Ghayesh,et al.  On the viscoelastic dynamics of fluid-conveying microtubes , 2018, International Journal of Engineering Science.

[61]  S. Krylov,et al.  Bistability criterion for electrostatically actuated initially curved micro plates , 2018, International Journal of Engineering Science.

[62]  N. Despotovic Stability and vibration of a nanoplate under body force using nonlocal elasticity theory , 2018 .

[63]  H. Khaniki On vibrations of nanobeam systems , 2018 .

[64]  Hsing-lin Wang,et al.  The biomass of ground cherry husks derived carbon nanoplates for electrochemical sensing , 2018 .

[65]  Pingjuan Niu,et al.  High-performance phototransistor based on individual high electron mobility MnWO4 nanoplate , 2018, Journal of Alloys and Compounds.

[66]  S. Hosseini-Hashemi,et al.  Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model , 2018 .

[67]  A. Alavi,et al.  Buckling analysis of graphene-reinforced mechanical metamaterial beams with periodic webbing patterns , 2018, International Journal of Engineering Science.

[68]  Raffaele Barretta,et al.  Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams , 2018, International Journal of Engineering Science.

[69]  J. Reddy,et al.  Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory , 2018 .

[70]  Xiaoning Jiang,et al.  On the mechanics of curved flexoelectric microbeams , 2018 .

[71]  R. Luciano,et al.  Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams , 2018 .

[72]  Raffaele Barretta,et al.  Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams , 2019, 1906.09626.

[73]  Li Li,et al.  The effect of thickness on the mechanics of nanobeams , 2018 .

[74]  M. Attia,et al.  On vibrations of functionally graded viscoelastic nanobeams with surface effects , 2018, International Journal of Engineering Science.

[75]  Mahdi Zeidi,et al.  Gradient elasticity theory for fiber composites with fibers resistant to extension and flexure , 2018, International Journal of Engineering Science.

[76]  F. Yuan,et al.  On wave propagation of porous nanotubes , 2018, International Journal of Engineering Science.

[77]  B. Akgöz,et al.  On dynamic analysis of nanorods , 2018, International Journal of Engineering Science.

[78]  Luciano Feo,et al.  Exact solutions of inflected functionally graded nano-beams in integral elasticity , 2017, Composites Part B: Engineering.

[79]  S. A. Faghidian,et al.  Free vibrations of elastic beams by modified nonlocal strain gradient theory , 2018, International Journal of Engineering Science.

[80]  Lu Lu,et al.  Small size effect on the wrinkling hierarchy in constrained monolayer graphene , 2018, International Journal of Engineering Science.

[81]  R. Luciano,et al.  Stress-driven nonlocal integral model for Timoshenko elastic nano-beams , 2018, European Journal of Mechanics - A/Solids.

[82]  M. Hosseini,et al.  Vibrations of three-dimensionally graded nanobeams , 2018, International Journal of Engineering Science.

[83]  A. Farajpour,et al.  Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory , 2018, International Journal of Engineering Science.

[84]  Chun H. Wang,et al.  Synergism of binary carbon nanofibres and graphene nanoplates in improving sensitivity and stability of stretchable strain sensors , 2019, Composites Science and Technology.

[85]  A. Farajpour,et al.  Global dynamics of fluid conveying nanotubes , 2019, International Journal of Engineering Science.

[86]  R. Luciano,et al.  Longitudinal vibrations of nano-rods by stress-driven integral elasticity , 2019 .

[87]  F. Yuan,et al.  On nonlinear bending behavior of FG porous curved nanotubes , 2019, International Journal of Engineering Science.

[88]  A. Farajpour,et al.  A review on the mechanics of functionally graded nanoscale and microscale structures , 2019, International Journal of Engineering Science.

[89]  R. Luciano,et al.  Axial and Torsional Free Vibrations of Elastic Nano-Beams by Stress-Driven Two-Phase Elasticity , 2019 .

[90]  Rongming Wang,et al.  Ultrathin Ni12P5 nanoplates for supercapacitor applications , 2019, Journal of Alloys and Compounds.

[91]  In‐Yup Jeon,et al.  Edge-carboxylated graphene nanoplatelets as efficient electrode materials for electrochemical supercapacitors , 2019, Carbon.

[92]  R. Keller,et al.  Transmission imaging with a programmable detector in a scanning electron microscope. , 2019, Ultramicroscopy.

[93]  H. Khaniki On vibrations of FG nanobeams , 2019, International Journal of Engineering Science.

[94]  J. Fernández-Sáez,et al.  Transverse free vibration of resonant nanoplate mass sensors: Identification of an attached point mass , 2019, International Journal of Mechanical Sciences.

[95]  H. Ogi,et al.  Nano-plate biosensor array using ultrafast heat transport through proteins , 2019, Sensors and Actuators B: Chemical.

[96]  M. Ghayesh Viscoelastic dynamics of axially FG microbeams , 2019, International Journal of Engineering Science.

[97]  S. Suthanthiraraj,et al.  Synthesis, characterization and electrochemical performance of DNA-templated Bi2MoO6 nanoplates for supercapacitor applications , 2019, Materials Science in Semiconductor Processing.

[98]  Paolo Fuschi,et al.  Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory , 2019, International Journal of Mechanical Sciences.