暂无分享,去创建一个
[1] Dexter Kozen,et al. Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[2] Chung-chieh Shan,et al. Deriving a probability density calculator (functional pearl) , 2016, ICFP.
[3] Theophilos Giannakopoulos,et al. Contextual equivalence for a probabilistic language with continuous random variables and recursion , 2018, Proc. ACM Program. Lang..
[4] Chung-Kil Hur,et al. A Provably Correct Sampler for Probabilistic Programs , 2015, FSTTCS.
[5] Michael Carbin,et al. Trace types and denotational semantics for sound programmable inference in probabilistic languages , 2020, Proc. ACM Program. Lang..
[6] Vikash K. Mansinghka,et al. Gen: a general-purpose probabilistic programming system with programmable inference , 2019, PLDI.
[7] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[8] Lori A. Clarke,et al. A System to Generate Test Data and Symbolically Execute Programs , 1976, IEEE Transactions on Software Engineering.
[9] John M. Lee. Manifolds and Differential Geometry , 2009 .
[10] Sam Staton,et al. Commutative Semantics for Probabilistic Programming , 2017, ESOP.
[11] Andrew Gelman,et al. Automatic Variational Inference in Stan , 2015, NIPS.
[12] G. Pólya,et al. Functions of One Complex Variable , 1998 .
[13] Thomas Ehrhard,et al. Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming , 2017, Proc. ACM Program. Lang..
[14] James C. King,et al. Symbolic execution and program testing , 1976, CACM.
[15] Noah D. Goodman,et al. Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..
[16] Noah D. Goodman,et al. Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation , 2011, AISTATS.
[17] N. Saheb-Djahromi,et al. Probabilistic LCF , 1978, International Symposium on Mathematical Foundations of Computer Science.
[18] Hongseok Yang. Some Semantic Issues in Probabilistic Programming Languages (Invited Talk) , 2019, FSCD.
[19] B. Mityagin. The Zero Set of a Real Analytic Function , 2015, Mathematical Notes.
[20] Dana S. Scott,et al. A Type-Theoretical Alternative to ISWIM, CUCH, OWHY , 1993, Theor. Comput. Sci..
[21] Alexander G. Gray,et al. A type theory for probability density functions , 2012, POPL '12.
[22] Laurent Regnier,et al. The differential lambda-calculus , 2003, Theor. Comput. Sci..
[23] Hongseok Yang,et al. Towards verified stochastic variational inference for probabilistic programs , 2019, Proc. ACM Program. Lang..
[24] W. Rudin. Principles of mathematical analysis , 1964 .
[25] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[26] David M. Blei,et al. Variational Inference: A Review for Statisticians , 2016, ArXiv.
[27] Hugo Paquet,et al. Probabilistic Programming Inference via Intensional Semantics , 2019, ESOP.
[28] Timon Gehr,et al. Fine-Grained Semantics for Probabilistic Programs , 2018, ESOP.
[29] Frank D. Wood,et al. LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models , 2019, AISTATS.
[30] Chong Wang,et al. Stochastic variational inference , 2012, J. Mach. Learn. Res..
[31] D. Dunson,et al. Discontinuous Hamiltonian Monte Carlo for discrete parameters and discontinuous likelihoods , 2017, 1705.08510.
[32] Claudio V. Russo,et al. Deriving Probability Density Functions from Probabilistic Functional Programs , 2017, Log. Methods Comput. Sci..
[33] Ohad Kammar,et al. Denotational validation of higher-order Bayesian inference , 2017, Proc. ACM Program. Lang..
[34] Ugo Dal Lago,et al. A lambda-calculus foundation for universal probabilistic programming , 2015, ICFP.
[35] Sean Gerrish,et al. Black Box Variational Inference , 2013, AISTATS.
[36] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[37] Kurt Sieber,et al. Relating Full Abstraction Results for Different Programming Languages , 1990, FSTTCS.
[38] Ohad Kammar,et al. A domain theory for statistical probabilistic programming , 2018, Proc. ACM Program. Lang..
[39] Loring W. Tu,et al. An introduction to manifolds , 2007 .
[40] Joost-Pieter Katoen,et al. On the hardness of analyzing probabilistic programs , 2018, Acta Informatica.