Loop detection of mobile robots using interval analysis

This paper proposes an original set-membership approach for loop detection of mobile robots in the situation where proprioceptive sensors only are available. To detect loops, the new concepts of thet-plane (which is a two dimensional space with time coordinates) are introduced. Intervals of functions (or tubes) are then used to represent uncertain trajectories and tests are provided in order to eliminate parts of the t-plane that do not correspond to any loop. An experiment with an actual underwater robot is proposed in order to illustrate the principle and the efficiency of the approach.

[1]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[2]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[3]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[4]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[5]  D. Meizel,et al.  Estimation of Mobile Robot Localization: Geometric Approaches , 1996 .

[6]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[7]  Luc Jaulin,et al.  Set-membership state estimation with fleeting data , 2012, Autom..

[8]  Jean-Arcady Meyer,et al.  Fast and Incremental Method for Loop-Closure Detection Using Bags of Visual Words , 2008, IEEE Transactions on Robotics.

[9]  Yves Lecourtier,et al.  Identifiability and distinguishability testing via computer algebra , 1985 .

[10]  Luc Jaulin A Nonlinear Set Membership Approach for the Localization and Map Building of Underwater Robots , 2009, IEEE Transactions on Robotics.

[11]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[12]  Fahed Abdallah,et al.  Box particle filtering for nonlinear state estimation using interval analysis , 2008, Autom..

[13]  Philippe Bonnifait,et al.  High Integrity GNSS Location Zone Characterization using Interval Analysis , 2009 .

[14]  Luc Jaulin,et al.  Contractor programming , 2009, Artif. Intell..

[15]  Eric Walter,et al.  Guaranteed numerical alternatives to structural identifiability testing , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Raazesh Sainudiin,et al.  Machine Interval Experiments , 2010 .

[18]  Alexandre Goldsztejn,et al.  Tinkerbell Is Chaotic , 2011, SIAM J. Appl. Dyn. Syst..

[19]  Y. Candau,et al.  Set membership state and parameter estimation for systems described by nonlinear differential equations , 2004, Autom..

[20]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[21]  Sebastien Lagrange,et al.  Injectivity analysis using interval analysis: Application to structural identifiability , 2008, Autom..

[22]  Sebastien Lagrange,et al.  On Sufficient Conditions of the Injectivity: Development of a Numerical Test Algorithm via Interval Analysis , 2007, Reliab. Comput..

[23]  Eric Walter,et al.  Guaranteed nonlinear parameter estimation from bounded-error data via interval analysis , 1993 .

[24]  Amos Ben-Zvi A Computationally Efficient Algorithm for Testing the Identifiability of Polynomial Systems with Applications to Biological Systems , 2010 .

[25]  Philippe Poignet,et al.  Nonlinear Predictive Control Using Constraints Satisfaction , 2003, COCOS.

[26]  W. Tucker The Lorenz attractor exists , 1999 .

[27]  Lionel Lapierre,et al.  Combined Path-following and Obstacle Avoidance Control of a Wheeled Robot , 2007, Int. J. Robotics Res..

[28]  Rafael Castro-Linares,et al.  Trajectory tracking for non-holonomic cars: A linear approach to controlled leader-follower formation , 2010, 49th IEEE Conference on Decision and Control (CDC).

[29]  Bertrand Cottenceau,et al.  Using interval arithmetic to prove that a set is path-connected , 2006, Theor. Comput. Sci..

[30]  Eric Brassart,et al.  Incremental Construction of the Robot's Environmental Map Using Interval Analysis , 2003, COCOS.

[31]  Patrick Rives,et al.  Bearing-only SLAM: comparison between probabilistic and deterministic methods , 2008 .