Light operated molecular machines.

In future, artificial molecular machines could enable the construction of intelligent materials or perform functions inside our body. We describe the role of light for the operation of molecular machines, and show the level of sophistication reached in their development by illustrating a few significant examples reported since the millennium.

[1]  Hiroto Murakami,et al.  A multi-mode-driven molecular shuttle: photochemically and thermally reactive azobenzene rotaxanes. , 2005, Journal of the American Chemical Society.

[2]  Yun Hee Jang,et al.  Density functional theory studies of the [2]rotaxane component of the Stoddart-heath molecular switch. , 2004, Journal of the American Chemical Society.

[3]  Dongsheng Liu,et al.  Light-driven conformational switch of i-motif DNA. , 2007, Angewandte Chemie.

[4]  G. Ciamician,et al.  THE PHOTOCHEMISTRY OF THE FUTURE. , 1912, Science.

[5]  Alberto Credi,et al.  Shuttling dynamics in an acid-base-switchable [2]rotaxane. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[6]  Francesco Zerbetto,et al.  Patterning through controlled submolecular motion: rotaxane-based switches and logic gates that function in solution and polymer films. , 2005, Angewandte Chemie.

[7]  Y. Takashima,et al.  Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. , 2007, Chemistry.

[8]  Alberto Credi,et al.  Artificial Molecular Motors Powered by Light , 2006 .

[9]  R. Astumian Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. , 2007, Physical chemistry chemical physics : PCCP.

[10]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[11]  I. Leray,et al.  Femtosecond to subnanosecond multistep calcium photoejection from a crown ether-linked merocyanine. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  I. Leray,et al.  Photoinduced cation translocation in a calix[4]biscrown: towards a new type of light-driven molecular shuttle. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  David A Leigh,et al.  A synthetic small molecule that can walk down a track. , 2010, Nature chemistry.

[14]  Seiji Shinkai,et al.  Photoresponsive crown ethers. 2. Photocontrol of ion extraction and ion transport by a bis(crown ether) with a butterfly-like motion , 1981 .

[15]  David A. Leigh,et al.  Operation Mechanism of a Molecular Machine Revealed Using Time-Resolved Vibrational Spectroscopy , 2010, Science.

[16]  Cees Dekker,et al.  Motor Proteins at Work for Nanotechnology , 2007, Science.

[17]  Keiji Hirose,et al.  An anthracene-based photochromic macrocycle as a key ring component to switch a frequency of threading motion. , 2008, Chemistry.

[18]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[19]  J Fraser Stoddart,et al.  A molecular shuttle. , 1991, Journal of the American Chemical Society.

[20]  M. Baroncini,et al.  Reversible photoswitching of rotaxane character and interplay of thermodynamic stability and kinetic lability in a self-assembling ring-axle molecular system. , 2010, Chemistry.

[21]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[22]  S. Lincoln,et al.  The foundation of a light driven molecular muscle based on stilbene and alpha-cyclodextrin. , 2008, Chemical communications.

[23]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[24]  A. Credi,et al.  Processing energy and signals by molecular and supramolecular systems. , 2008, Chemistry.

[25]  Xiang Ma,et al.  A [3]rotaxane with three stable states that responds to multiple-inputs and displays dual fluorescence addresses. , 2005, Chemistry.

[26]  T. Aida,et al.  Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. , 2005, Chemical reviews.

[27]  Auke Meetsma,et al.  MHz unidirectional rotation of molecular rotary motors. , 2008, Journal of the American Chemical Society.

[28]  Francesco Zerbetto,et al.  Macroscopic transport by synthetic molecular machines , 2005, Nature materials.

[29]  A. Credi,et al.  Artificial molecular shuttles: from concepts to devices , 2009 .

[30]  Xi Zhang,et al.  Tuning surface wettability through photocontrolled reversible molecular shuttle. , 2008, Chemical communications.

[31]  Alberto Credi,et al.  Multistable Self-Assembling System with Three Distinct Luminescence Outputs: Prototype of a Bidirectional Half Subtractor and Reversible Logic Device , 2010 .

[32]  Vincenzo Balzani,et al.  Photochemical conversion of solar energy. , 2008, ChemSusChem.

[33]  Auke Meetsma,et al.  A redesign of light-driven rotary molecular motors. , 2008, Organic & biomolecular chemistry.

[34]  J. Fraser Stoddart,et al.  Mesostructured multifunctional nanoparticles for imaging and drug delivery , 2009 .

[35]  Belén Ferrer,et al.  Autonomous artificial nanomotor powered by sunlight , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  T. Moore,et al.  Solar fuels via artificial photosynthesis. , 2009, Accounts of chemical research.

[37]  Dirk Trauner,et al.  Engineering light-gated ion channels. , 2006, Biochemistry.

[38]  Hiroyuki Kai,et al.  Toward long-distance mechanical communication: studies on a ternary complex interconnected by a bridging rotary module. , 2008, Journal of the American Chemical Society.

[39]  Françisco M Raymo,et al.  Memory effects based on intermolecular photoinduced proton transfer. , 2003, Journal of the American Chemical Society.

[40]  Amanda Carroll-Portillo,et al.  Active capture and transport of virus particles using a biomolecular motor-driven, nanoscale antibody sandwich assay. , 2006, Small.

[41]  Richard A. L. Jones,et al.  Soft Machines: Nanotechnology and Life , 2004 .

[42]  H. Tian,et al.  Bright functional rotaxanes. , 2010, Chemical Society reviews.

[43]  Alberto Credi,et al.  All-optical integrated logic operations based on chemical communication between molecular switches. , 2009, Chemistry.

[44]  A. Troisi,et al.  Reducing Molecular Shuttling to a Single Dimension. , 2000, Angewandte Chemie.

[45]  S. Lincoln,et al.  Synthesis of alpha-cyclodextrin [2]-rotaxanes using chlorotriazine capping reagents. , 2008, Organic & biomolecular chemistry.

[46]  Euan R. Kay,et al.  A molecular information ratchet , 2007, Nature.

[47]  B. Feringa,et al.  Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. , 2007, Angewandte Chemie.

[48]  Hui-Fang Wu,et al.  Intramolecular electron transfer within the substituted tetrathiafulvalene-quinone dyads: facilitated by metal ion and photomodulation in the presence of spiropyran. , 2007, Journal of the American Chemical Society.

[49]  Jordan Patti,et al.  Using biological inspiration to engineer functional nanostructured materials. , 2006, Small.

[50]  D. Qu,et al.  A half adder based on a photochemically driven [2]rotaxane. , 2005, Angewandte Chemie.

[51]  Jean-Pierre Sauvage,et al.  Transition metal complexes as molecular machine prototypes. , 2007, Chemical Society reviews.

[52]  S. J. van der Molen,et al.  Optimizing rotary processes in synthetic molecular motors , 2009, Proceedings of the National Academy of Sciences.

[53]  A. Credi,et al.  Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld , 2008 .

[54]  Nathalie Katsonis,et al.  Molecular machines: Nanomotor rotates microscale objects , 2006, Nature.

[55]  Wesley R Browne,et al.  Making molecular machines work , 2006, Nature nanotechnology.

[56]  Giovanni Bussi,et al.  Unravelling the shuttling mechanism in a photoswitchable multicomponent bistable rotaxane. , 2008, Angewandte Chemie.

[57]  Alberto Credi,et al.  A simple molecular machine operated by photoinduced proton transfer. , 2007, Journal of the American Chemical Society.

[58]  Auke Meetsma,et al.  Light-driven molecular motors: stepwise thermal helix inversion during unidirectional rotation of sterically overcrowded biphenanthrylidenes. , 2005, Journal of the American Chemical Society.

[59]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[60]  A. Credi,et al.  Light on molecular machines. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[61]  F. Paolucci,et al.  Photoinduction of Fast, Reversible Translational Motion in a Hydrogen-Bonded Molecular Shuttle , 2001, Science.

[62]  Auke Meetsma,et al.  Acceleration of a nanomotor: electronic control of the rotary speed of a light-driven molecular rotor. , 2005, Journal of the American Chemical Society.

[63]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[64]  M. Parrinello,et al.  The microscopic switching mechanism of a [2]catenane. , 2005, The journal of physical chemistry. B.

[65]  J. Skinner,et al.  Vibrational spectroscopy as a probe of structure and dynamics in liquid water. , 2010, Chemical reviews.

[66]  Auke Meetsma,et al.  A donor-acceptor substituted molecular motor: unidirectional rotation driven by visible light. , 2003, Organic & biomolecular chemistry.

[67]  J. F. Stoddart,et al.  The role of physical environment on molecular electromechanical switching. , 2004, Chemistry.

[68]  Douglas C. Friedman,et al.  A light-gated STOP-GO molecular shuttle. , 2009, Journal of the American Chemical Society.

[69]  Ben L Feringa,et al.  A Light-Actuated Nanovalve Derived from a Channel Protein , 2005, Science.

[70]  Vincenzo Balzani,et al.  Light powered molecular machines. , 2009, Chemical Society reviews.

[71]  Lei Fang,et al.  An acid-base-controllable [c2]daisy chain. , 2008, Angewandte Chemie.

[72]  Euan R Kay,et al.  Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. , 2006, Journal of the American Chemical Society.

[73]  Harry L Anderson,et al.  Unidirectional photoinduced shuttling in a rotaxane with a symmetric stilbene dumbbell. , 2002, Angewandte Chemie.

[74]  Michael M. Pollard,et al.  Light-driven altitudinal molecular motors on surfaces. , 2009, Chemical communications.

[75]  Auke Meetsma,et al.  Increased speed of rotation for the smallest light-driven molecular motor. , 2003, Journal of the American Chemical Society.

[76]  A. Credi,et al.  Comprar Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld | Vincenzo Balzani | 9783527318001 | Wiley , 2008 .

[77]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[78]  Keiji Hirose,et al.  A shuttling molecular machine with reversible brake function. , 2008, Chemistry.

[79]  N. Branda,et al.  Selective and sequential photorelease using molecular switches. , 2006, Angewandte Chemie.

[80]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[81]  Ben L. Feringa,et al.  Unidirectional molecular motor on a gold surface , 2005, Nature.

[82]  Bartosz A Grzybowski,et al.  Nanoparticles functionalised with reversible molecular and supramolecular switches. , 2010, Chemical Society reviews.

[83]  Vincenzo Balzani,et al.  Molecular machines working on surfaces and at interfaces. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[84]  Itamar Willner,et al.  A photoactivated 'molecular train' for optoelectronic applications: light-stimulated translocation of a β-cyclodextrin receptor within a stoppered azobenzene-alkyl chain supramolecular monolayer assembly on a Au-electrode , 2001 .

[85]  D. Leigh,et al.  Photoinduced Shuttling Dynamics of Rotaxanes in Viscous Polymer Solutions , 2009 .

[86]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[87]  Susumu Tsuda,et al.  Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. , 2006, Chemical communications.

[88]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[89]  J. F. Stoddart,et al.  Photo-driven molecular devices. , 2007, Chemical Society reviews.