Classification-Driven Watershed Segmentation

This paper presents a novel approach for creation of topographical function and object markers used within watershed segmentation. Typically, marker-driven watershed segmentation extracts seeds indicating the presence of objects or background at specific image locations. The marker locations are then set to be regional minima within the topological surface (typically, the gradient of the original input image), and the watershed algorithm is applied. In contrast, our approach uses two classifiers, one trained to produce markers, the other trained to produce object boundaries. As a result of using machine-learned pixel classification, the proposed algorithm is directly applicable to both single channel and multichannel image data. Additionally, rather than flooding the gradient image, we use the inverted probability map produced by the second aforementioned classifier as input to the watershed algorithm. Experimental results demonstrate the superior performance of the classification-driven watershed segmentation algorithm for the tasks of 1) image-based granulometry and 2) remote sensing

[1]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[2]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Richard C. Dubes,et al.  Performance evaluation for four classes of textural features , 1992, Pattern Recognit..

[5]  John M Kemeny,et al.  Analysis of Rock Fragmentation Using Digital Image Processing , 1993 .

[6]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Matti Pietikäinen,et al.  Unsupervised Texture Segmentation Using Feature Distributions , 1997, ICIAP.

[8]  Paul A. Viola,et al.  A Non-Parametric Multi-Scale Statistical Model for Natural Images , 1997, NIPS.

[9]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[10]  Bruce A. Draper,et al.  ADORE: Adaptive Object Recognition , 1999, ICVS.

[11]  Matti Pietikäinen,et al.  Unsupervised texture segmentation using feature distributions , 1997, Pattern Recognit..

[12]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  L. Joshua Leon,et al.  Watershed-Based Segmentation and Region Merging , 2000, Comput. Vis. Image Underst..

[14]  Fadi Dornaika,et al.  Granulometry Using Mathematical Morphology and Motion , 2000, MVA.

[15]  Paul A. Viola,et al.  Boosting Image Retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[16]  Hui Cheng,et al.  Multiscale Bayesian segmentation using a trainable context model , 2001, IEEE Trans. Image Process..

[17]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[18]  Hubert Cardot,et al.  Cooperation of color pixel classification schemes and color watershed: a study for microscopic images , 2002, IEEE Trans. Image Process..

[19]  Hubert Cardot,et al.  Bayesian marker extraction for color watershed in segmenting microscopic images , 2002, Object recognition supported by user interaction for service robots.

[20]  Robert P. W. Duin,et al.  A Matlab Toolbox for Pattern Recognition , 2004 .

[21]  Vadim Bulitko,et al.  Machine Learning for Adaptive Image Interpretation , 2004, AAAI.

[22]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[23]  Vadim Bulitko,et al.  Comparison of Machine Learned Image Interpretation Systems in the Domain of Forestry , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[24]  Jianping Fan,et al.  Seeded region growing: an extensive and comparative study , 2005, Pattern Recognit. Lett..

[25]  James Theiler,et al.  Online feature selection for pixel classification , 2005, ICML.

[26]  Tom C. Palangio,et al.  WipFrag image based granulometry system , 2018, Measurement of Blast Fragmentation.

[27]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .