Ubiquitin-mediated degradation at the Golgi apparatus

The Golgi apparatus is an essential organelle of the secretory pathway in eukaryotic cells. It processes secretory and transmembrane proteins and orchestrates their transport to other endomembrane compartments or the plasma membrane. The Golgi apparatus thereby shapes the cell surface, controlling cell polarity, cell-cell communication, and immune signaling. The cytosolic face of the Golgi hosts and regulates signaling cascades, impacting most notably the DNA damage response and mitosis. These essential functions strongly depend on Golgi protein homeostasis and Golgi integrity. Golgi fragmentation and consequent malfunction is associated with neurodegenerative diseases and certain cancer types. Recent studies provide first insight into the critical role of ubiquitin signaling in maintaining Golgi integrity and in Golgi protein quality control. Similar to well described pathways at the endoplasmic reticulum, ubiquitin-dependent degradation of non-native proteins prevents the accumulation of toxic protein aggregates at the Golgi. Moreover, ubiquitination regulates Golgi structural rearrangements in response to cellular stress. Advances in elucidating ubiquitination and degradation events at the Golgi are starting to paint a picture of the molecular machinery underlying Golgi (protein) homeostasis.

[1]  H. Meyer,et al.  Targeting of client proteins to the VCP/p97/Cdc48 unfolding machine , 2023, Frontiers in Molecular Biosciences.

[2]  Pedro Carvalho,et al.  Endoplasmic Reticulum-Associated Protein Degradation. , 2022, Cold Spring Harbor perspectives in biology.

[3]  Quan Chen,et al.  Nondegradable ubiquitinated ATG9A organizes Golgi integrity and dynamics upon stresses. , 2022, Cell reports.

[4]  H. Ueda,et al.  Ubiquitination of phosphatidylethanolamine in organellar membranes. , 2022, Molecular cell.

[5]  A. Colanzi,et al.  Golgi Complex: A Signaling Hub in Cancer , 2022, Cells.

[6]  Liangliang Sun,et al.  Cul3-KLHL20 E3 ubiquitin ligase plays a key role in the arms race between HIV-1 Nef and host SERINC5 restriction , 2022, Nature Communications.

[7]  D. Teis,et al.  Protein quality control at the Golgi. , 2022, Current opinion in cell biology.

[8]  Ron Benyair,et al.  Maintaining Golgi Homeostasis: A Balancing Act of Two Proteolytic Pathways , 2022, Cells.

[9]  M. J. Clague,et al.  Membrane compartmentalisation of the ubiquitin system. , 2021, Seminars in cell & developmental biology.

[10]  M. Fukuda,et al.  Establishment and analysis of conditional Rab1 and Rab5 knockout cells by using the auxin-inducible degron system. , 2021, Journal of cell science.

[11]  F. Campelo,et al.  Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. , 2021, Archives of biochemistry and biophysics.

[12]  Xiaoyan Zhang Alterations of Golgi Structural Proteins and Glycosylation Defects in Cancer , 2021, Frontiers in Cell and Developmental Biology.

[13]  J. von Blume,et al.  Sending out molecules from the TGN. , 2021, Current opinion in cell biology.

[14]  S. Emr,et al.  Membrane Protein Quality Control Mechanisms in the Endo-Lysosome System. , 2021, Trends in cell biology.

[15]  I. Matic,et al.  Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection , 2020, Cell Death & Differentiation.

[16]  J. Seemann,et al.  Rapid degradation of GRASP55 and GRASP65 reveals their immediate impact on the Golgi structure , 2020, bioRxiv.

[17]  G. Superti-Furga,et al.  Targeted Degradation of SLC Transporters Reveals Amenability of Multi-Pass Transmembrane Proteins to Ligand-Induced Proteolysis , 2020, Cell chemical biology.

[18]  Merav D Shmueli,et al.  Golgi organization is regulated by proteasomal degradation , 2020, Nature Communications.

[19]  H. Meyer,et al.  Repair or Lysophagy: Dealing with Damaged Lysosomes. , 2020, Journal of molecular biology.

[20]  H. Stenmark,et al.  The many functions of ESCRTs , 2019, Nature Reviews Molecular Cell Biology.

[21]  G. Hummer,et al.  Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB , 2019, Molecular cell.

[22]  M. Smolka,et al.  Deubiquitination of phosphoribosyl-ubiquitin conjugates by phosphodiesterase-domain–containing Legionella effectors , 2019, Proceedings of the National Academy of Sciences.

[23]  E. Shoubridge,et al.  A proximity biotinylation map of a human cell , 2019, bioRxiv.

[24]  J. Brodsky,et al.  Protein quality control in the secretory pathway , 2019, The Journal of cell biology.

[25]  Prajakta Kulkarni-Gosavi,et al.  Form and function of the Golgi apparatus: scaffolds, cytoskeleton and signalling , 2019, FEBS letters.

[26]  M. Peter,et al.  Endosome and Golgi‐associated degradation (EGAD) of membrane proteins regulates sphingolipid metabolism , 2019, The EMBO journal.

[27]  Nathaniel A. Hathaway,et al.  Ring finger protein 121 is a potent regulator of adeno-associated viral genome transcription , 2019, PLoS pathogens.

[28]  H. Shu,et al.  The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation , 2019, Front. Immunol..

[29]  Pedro Carvalho,et al.  EGAD! There is an ERAD doppelganger in the Golgi , 2019, The EMBO journal.

[30]  Christian Makhoul,et al.  Golgi Dynamics: The Morphology of the Mammalian Golgi Apparatus in Health and Disease , 2019, Front. Cell Dev. Biol..

[31]  D. Komander,et al.  Breaking the chains: deubiquitylating enzyme specificity begets function , 2019, Nature Reviews Molecular Cell Biology.

[32]  Andreas Martin,et al.  Structure and Function of the 26S Proteasome. , 2018, Annual review of biochemistry.

[33]  S. Elledge,et al.  The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons , 2018, Cell.

[34]  Junjie Hu,et al.  Transmembrane E3 ligase RNF183 mediates ER stress-induced apoptosis by degrading Bcl-xL , 2018, Proceedings of the National Academy of Sciences.

[35]  J. Harper,et al.  Building and decoding ubiquitin chains for mitophagy , 2018, Nature Reviews Molecular Cell Biology.

[36]  Felichi Mae Arines,et al.  Sorting of a multi-subunit ubiquitin ligase complex in the endolysosome system , 2018, eLife.

[37]  A. Saito,et al.  Sec16A, a key protein in COPII vesicle formation, regulates the stability and localization of the novel ubiquitin ligase RNF183 , 2018, PloS one.

[38]  J. Bonifacino,et al.  Segregation in the Golgi complex precedes export of endolysosomal proteins in distinct transport carriers , 2017, The Journal of cell biology.

[39]  P. Gleeson,et al.  The Function of the Golgi Ribbon Structure – An Enduring Mystery Unfolds! , 2017, BioEssays : news and reviews in molecular, cellular and developmental biology.

[40]  C. Crews,et al.  Small-Molecule Modulation of Protein Homeostasis. , 2017, Chemical reviews.

[41]  N. Zheng,et al.  Ubiquitin Ligases: Structure, Function, and Regulation. , 2017, Annual review of biochemistry.

[42]  Devin P. Sullivan,et al.  A subcellular map of the human proteome , 2017, Science.

[43]  A. Helenius,et al.  Cargo Capture and Bulk Flow in the Early Secretory Pathway. , 2016, Annual review of cell and developmental biology.

[44]  A. Ciechanover,et al.  The ubiquitin-proteasome system and autophagy: Coordinated and independent activities. , 2016, The international journal of biochemistry & cell biology.

[45]  H. Walden,et al.  Types of Ubiquitin Ligases , 2016, Cell.

[46]  N. Rahimi,et al.  RNF121 Inhibits Angiogenic Growth Factor Signaling by Restricting Cell Surface Expression of VEGFR‐2 , 2016, Traffic.

[47]  M. Bekier,et al.  Golgi fragmentation in Alzheimer's disease , 2015, Front. Neurosci..

[48]  M. Schuldiner,et al.  Starvation-Dependent Regulation of Golgi Quality Control Links the TOR Signaling and Vacuolar Protein Sorting Pathways. , 2015, Cell reports.

[49]  F. Bard,et al.  The Ubiquitin Ligase CBLC Maintains the Network Organization of the Golgi Apparatus , 2015, PloS one.

[50]  A. Vazquez,et al.  The E3 ubiquitin ligase RNF121 is a positive regulator of NF-κB activation , 2014, Cell Communication and Signaling.

[51]  Zhijian J. Chen,et al.  K33-Linked Polyubiquitination of Coronin 7 by Cul3-KLHL20 Ubiquitin E3 Ligase Regulates Protein Trafficking. , 2014, Molecular cell.

[52]  Y. Ye,et al.  Cleaning up in the endoplasmic reticulum: ubiquitin in charge , 2014, Nature Structural &Molecular Biology.

[53]  Christopher E. Berndsen,et al.  New insights into ubiquitin E3 ligase mechanism , 2014, Nature Structural &Molecular Biology.

[54]  P. Espenshade,et al.  Subunit Architecture of the Golgi Dsc E3 Ligase Required for Sterol Regulatory Element-binding Protein (SREBP) Cleavage in Fission Yeast* , 2013, The Journal of Biological Chemistry.

[55]  E. Miller,et al.  Secretory Protein Biogenesis and Traffic in the Early Secretory Pathway , 2013, Genetics.

[56]  S. Emr,et al.  Ubiquitin and membrane protein turnover: from cradle to grave. , 2012, Annual review of biochemistry.

[57]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[58]  N. Nakamura The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function , 2011, Membranes.

[59]  Songyu Wang,et al.  Routing Misfolded Proteins through the Multivesicular Body (MVB) Pathway Protects against Proteotoxicity* , 2011, The Journal of Biological Chemistry.

[60]  S. Gygi,et al.  An OBSL1-Cul7Fbxw8 Ubiquitin Ligase Signaling Mechanism Regulates Golgi Morphology and Dendrite Patterning , 2011, PLoS biology.

[61]  N. Krogan,et al.  Yeast SREBP cleavage activation requires the Golgi Dsc E3 ligase complex. , 2011, Molecular cell.

[62]  Yi Xiang,et al.  New components of the Golgi matrix , 2011, Cell and Tissue Research.

[63]  J. Wade Harper,et al.  Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways , 2009, Nature Reviews Molecular Cell Biology.

[64]  A. Luini,et al.  A traffic-activated Golgi-based signalling circuit coordinates the secretory pathway , 2008, Nature Cell Biology.

[65]  Aipo Diao,et al.  ZFPL1, a novel ring finger protein required for cis‐Golgi integrity and efficient ER‐to‐Golgi transport , 2008, The EMBO journal.

[66]  A. Luini,et al.  Exiting the Golgi complex , 2008, Nature Reviews Molecular Cell Biology.

[67]  P. Lehner,et al.  MARCH‐IX mediates ubiquitination and downregulation of ICAM‐1 , 2007, FEBS letters.

[68]  Jing Wang,et al.  [Cloning, expression and subcellular localization of a novel human gene-RNF122]. , 2006, Beijing da xue xue bao. Yi xue ban = Journal of Peking University. Health sciences.

[69]  H. Pelham,et al.  Swf1‐dependent palmitoylation of the SNARE Tlg1 prevents its ubiquitination and degradation , 2005, The EMBO journal.

[70]  Sharad Kumar,et al.  N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking , 2004, Journal of Cell Science.

[71]  H. Pelham Membrane Traffic: GGAs Sort Ubiquitin , 2004, Current Biology.

[72]  H. Pelham,et al.  Bsd2 binds the ubiquitin ligase Rsp5 and mediates the ubiquitination of transmembrane proteins , 2004, The EMBO journal.

[73]  K. Früh,et al.  Downregulation of Major Histocompatibility Complex Class I by Human Ubiquitin Ligases Related to Viral Immune Evasion Proteins , 2004, Journal of Virology.

[74]  H. Pelham,et al.  A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies , 2002, Nature Cell Biology.

[75]  V. Lupashin,et al.  Rapid COG Depletion in Mammalian Cell by Auxin-Inducible Degradation System. , 2023, Methods in molecular biology.

[76]  N. Zheng,et al.  Structural Biology of CRL Ubiquitin Ligases. , 2020, Advances in experimental medicine and biology.

[77]  D. Teis,et al.  ESCRT and Membrane Protein Ubiquitination. , 2018, Progress in molecular and subcellular biology.