Stereoscopic depth constancy

Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content. This article is part of the themed issue ‘Vision in our three-dimensional world’.

[1]  David J. Fleet,et al.  Neural encoding of binocular disparity: Energy models, position shifts and phase shifts , 1996, Vision Research.

[2]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[3]  Tal Makovski,et al.  The visual attractor illusion. , 2010, Journal of vision.

[4]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[5]  Hans-Peter Seidel,et al.  A perceptual model for disparity , 2011, ACM Trans. Graph..

[6]  H. Wallach,et al.  The constancy of stereoscopic depth. , 1963, The American journal of psychology.

[7]  B. G. Cumming,et al.  Vertical disparities and perception of three-dimensional shape , 1991, Nature.

[8]  Andrew J. Woods,et al.  Image distortions in stereoscopic video systems , 1993, Electronic Imaging.

[9]  Ingo Fründ,et al.  Inference for psychometric functions in the presence of nonstationary behavior. , 2011, Journal of vision.

[10]  P Artal,et al.  Determination of the point-spread function of human eyes using a hybrid optical-digital method. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[11]  R. Raskar,et al.  Display Adaptive 3 D Content Remapping , 2013 .

[12]  C. A. Burbeck,et al.  Locus of spatial-frequency discrimination. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[13]  Charles Goodwin,et al.  Seeing in Depth , 1995 .

[14]  B. Rogers,et al.  The effect of display size on disparity scaling from differential perspective and vergence cues , 1996, Vision Research.

[15]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[16]  Junzhong Liang,et al.  Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. , 1994, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Gordon Wetzstein,et al.  Display adaptive 3D content remapping , 2013, Comput. Graph..

[18]  A. Parker,et al.  Receptive Field Size in V1 Neurons Limits Acuity for Perceiving Disparity Modulation , 2004, The Journal of Neuroscience.

[19]  David Kane,et al.  The Limits of Human Stereopsis in Space and Time , 2014, The Journal of Neuroscience.

[20]  M. Landy,et al.  Why Is Spatial Stereoresolution So Low? , 2004, The Journal of Neuroscience.

[21]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[22]  M F Bradshaw,et al.  Cues to Viewing Distance for Stereoscopic Depth Constancy , 1998, Perception.

[23]  Neil A. Dodgson,et al.  Variation and extrema of human interpupillary distance , 2004, IS&T/SPIE Electronic Imaging.

[24]  Peter Lennie,et al.  Spatio-temporal requirements for binocular correlation in stereopsis , 1996, Vision Research.

[25]  M F Bradshaw,et al.  Disparity Scaling and the Perception of Frontoparallel Surfaces , 1995, Perception.

[26]  James Gao,et al.  High-speed switchable lens enables the development of a volumetric stereoscopic display. , 2009, Optics express.

[27]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[28]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[29]  G. Rhodes,et al.  Sex-specific norms code face identity. , 2011, Journal of vision.

[30]  Kevin J. MacKenzie,et al.  Accommodation to multiple-focal-plane displays: Implications for improving stereoscopic displays and for accommodation control. , 2010, Journal of vision.

[31]  I. Ohzawa,et al.  A comparison of contrast detection and discrimination , 1986, Vision Research.

[32]  Stephen Grossberg,et al.  Depth-tuning of occluded moving objects by boundary selection of motion signals , 2005 .

[33]  M F Bradshaw,et al.  Vertical disparities, differential perspective and binocular stereopsis , 1993, Nature.

[34]  Martin S Banks,et al.  Limits of stereopsis explained by local cross-correlation. , 2009, Journal of vision.

[35]  T S Collett,et al.  The Interaction of Oculomotor Cues and Stimulus Size in Stereoscopic Depth Constancy , 1991, Perception.

[36]  M. Ernst,et al.  Focus cues affect perceived depth. , 2005, Journal of vision.

[37]  O. Braddick,et al.  Seeing in Depth , 2008 .

[38]  Cynthia Wolberger,et al.  The Structure of GABPα/β: An ETS Domain- Ankyrin Repeat Heterodimer Bound to DNA , 1998 .

[39]  Martin S. Banks,et al.  A stereo display prototype with multiple focal distances , 2004, ACM Trans. Graph..

[40]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[41]  C. WILLIAM TYLER,et al.  Depth perception in disparity gratings , 1974, Nature.

[42]  Martin S. Banks,et al.  Misperceptions in stereoscopic displays: a vision science perspective , 2008, APGV '08.

[43]  M. Gross,et al.  Nonlinear disparity mapping for stereoscopic 3D , 2010, ACM Trans. Graph..

[44]  I. Ohzawa,et al.  Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. , 1990, Science.

[45]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[46]  Ning Qian,et al.  Physiological computation of binocular disparity , 1997, Vision Research.

[47]  David M. Hoffman,et al.  The zone of comfort: Predicting visual discomfort with stereo displays. , 2011, Journal of vision.

[48]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[49]  Raanan Fattal,et al.  Image and video upscaling from local self-examples , 2011, TOGS.

[50]  D. Field,et al.  What's constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns , 1995, Vision Research.

[51]  Martin S. Banks,et al.  Creating effective focus cues in multi-plane 3D displays , 2011, Optics express.

[52]  James A. Crowell,et al.  Horizontal and vertical disparity, eye position, and stereoscopic slant perception , 1999, Vision Research.

[53]  H. Seidel,et al.  Pattern-aware Deformation Using Sliding Dockers , 2011, SIGGRAPH 2011.

[54]  B. Julesz,et al.  A disparity gradient limit for binocular fusion. , 1980, Science.

[55]  Karol Myszkowski,et al.  Perceptual depth compression for stereo applications , 2014, Comput. Graph. Forum.

[56]  E. Johnston Systematic distortions of shape from stereopsis , 1991, Vision Research.