Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives.

Recent research has demonstrated that the non-coding genome plays a key role in genetic programming and gene regulation during development as well as in health and cardiovascular disease. About 99% of the human genome do not encode proteins, but are transcriptionally active representing a broad spectrum of non-coding RNAs (ncRNAs) with important regulatory and structural functions. Non-coding RNAs have been identified as critical novel regulators of cardiovascular risk factors and cell functions and are thus important candidates to improve diagnostics and prognosis assessment. Beyond this, ncRNAs are rapidly emgerging as fundamentally novel therapeutics. On a first level, ncRNAs provide novel therapeutic targets some of which are entering assessment in clinical trials. On a second level, new therapeutic tools were developed from endogenous ncRNAs serving as blueprints. Particularly advanced is the development of RNA interference (RNAi) drugs which use recently discovered pathways of endogenous short interfering RNAs and are becoming versatile tools for efficient silencing of protein expression. Pioneering clinical studies include RNAi drugs targeting liver synthesis of PCSK9 resulting in highly significant lowering of LDL cholesterol or targeting liver transthyretin (TTR) synthesis for treatment of cardiac TTR amyloidosis. Further novel drugs mimicking actions of endogenous ncRNAs may arise from exploitation of molecular interactions not accessible to conventional pharmacology. We provide an update on recent developments and perspectives for diagnostic and therapeutic use of ncRNAs in cardiovascular diseases, including atherosclerosis/coronary disease, post-myocardial infarction remodelling, and heart failure.

[1]  A. Bayés‐Genís,et al.  Transitioning from usual care to biomarker-based personalized and precision medicine in heart failure: call for action. , 2018, European heart journal.

[2]  Yajnavalka Banerjee,et al.  A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. , 2017, The New England journal of medicine.

[3]  Stanley T Crooke,et al.  Cellular uptake and trafficking of antisense oligonucleotides , 2017, Nature Biotechnology.

[4]  anastasia. khvorova,et al.  The chemical evolution of oligonucleotide therapies of clinical utility , 2017, Nature Biotechnology.

[5]  J. Rossi,et al.  Aptamers as targeted therapeutics: current potential and challenges , 2016, Nature Reviews Drug Discovery.

[6]  Saumya Das,et al.  High Throughput Sequencing of Extracellular RNA from Human Plasma , 2017, PloS one.

[7]  A. Khvorova Oligonucleotide Therapeutics - A New Class of Cholesterol-Lowering Drugs. , 2017, The New England journal of medicine.

[8]  L. Räber,et al.  Profiling and validation of circulating microRNAs for cardiovascular events in patients presenting with ST-segment elevation myocardial infarction , 2016, European heart journal.

[9]  C. Weber,et al.  Small but smart: MicroRNAs orchestrate atherosclerosis development and progression. , 2016, Biochimica et Biophysica Acta.

[10]  U. Eriksson,et al.  The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. , 2016, Journal of the American College of Cardiology.

[11]  Alfonso Valencia,et al.  The BLUEPRINT Data Analysis Portal. , 2016, Cell systems.

[12]  Pierre-Étienne Jacques,et al.  The International Human Epigenome Consortium Data Portal. , 2016, Cell systems.

[13]  Steven J. M. Jones,et al.  The International Human Epigenome Consortium: A Blueprint for Scientific Collaboration and Discovery , 2016, Cell.

[14]  Matthew T. Maurano,et al.  Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells , 2016, Cell.

[15]  T. Thum,et al.  Long Noncoding RNAs in Cardiovascular Pathology, Diagnosis, and Therapy. , 2016, Circulation.

[16]  F. Edfors,et al.  Gene‐specific correlation of RNA and protein levels in human cells and tissues , 2016, Molecular systems biology.

[17]  K. Rayner,et al.  Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis. , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[18]  U. Landmesser,et al.  Circulating exosomal microRNAs predict functional recovery after MitraClip repair of severe mitral regurgitation. , 2016, International journal of cardiology.

[19]  Volkmar Falk,et al.  2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure , 2016, Revista espanola de cardiologia.

[20]  A. Laucevičius,et al.  Identifying circulating microRNAs as biomarkers of cardiovascular disease: a systematic review , 2016, Cardiovascular research.

[21]  Garret A. FitzGerald,et al.  Measure for Measure: Biomarker standards and transparency , 2016, Science Translational Medicine.

[22]  J. Mendell Targeting a Long Noncoding RNA in Breast Cancer. , 2016, The New England journal of medicine.

[23]  S. Fichtlscherer,et al.  Transcoronary gradients of vascular miRNAs and coronary atherosclerotic plaque characteristics. , 2016, European heart journal.

[24]  J. Hulot,et al.  Gene therapy for the treatment of heart failure: promise postponed. , 2016, European heart journal.

[25]  Daniel G. Anderson,et al.  RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction , 2016, Science Translational Medicine.

[26]  T. Thum,et al.  Long noncoding RNAs in kidney and cardiovascular diseases , 2016, Nature Reviews Nephrology.

[27]  Gary H Lyman,et al.  Biomarker Tests for Molecularly Targeted Therapies--The Key to Unlocking Precision Medicine. , 2016, The New England journal of medicine.

[28]  Sreekala S. Nampoothiri,et al.  ISCHEMIRs: Finding a Way Through the Obstructed Cerebral Arteries. , 2016, Current drug targets.

[29]  S. Engelhardt,et al.  Essential Role for Premature Senescence of Myofibroblasts in Myocardial Fibrosis. , 2016, Journal of the American College of Cardiology.

[30]  P. Quax,et al.  The multifactorial nature of microRNAs in vascular remodelling. , 2016, Cardiovascular research.

[31]  Jian Wang,et al.  The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. , 2016, Cardiovascular research.

[32]  P. Fasanaro,et al.  Implication of Long noncoding RNAs in the endothelial cell response to hypoxia revealed by RNA-sequencing , 2016, Scientific Reports.

[33]  D. Marsh,et al.  Comparison of Methodologies to Detect Low Levels of Hemolysis in Serum for Accurate Assessment of Serum microRNAs , 2016, PloS one.

[34]  Fen Hu,et al.  Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response , 2016, Journal of Molecular Medicine.

[35]  Frank Rühle,et al.  Long non-coding RNA Databases in Cardiovascular Research , 2016, Genom. Proteom. Bioinform..

[36]  B. Schroen,et al.  Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity. , 2016, Journal of molecular cell biology.

[37]  W. Paulus,et al.  Myocardial Microvascular Inflammatory Endothelial Activation in Heart Failure With Preserved Ejection Fraction. , 2016, JACC. Heart failure.

[38]  K. Rayner,et al.  Long Noncoding RNAs in the Heart: The Regulatory Roadmap of Cardiovascular Development and Disease. , 2016, Circulation. Cardiovascular genetics.

[39]  Stefanie Dimmeler,et al.  Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? , 2016, Journal of the American College of Cardiology.

[40]  Yingying Zhang,et al.  Silencing MicroRNA-155 Attenuates Cardiac Injury and Dysfunction in Viral Myocarditis via Promotion of M2 Phenotype Polarization of Macrophages , 2016, Scientific Reports.

[41]  A. Yu,et al.  Bioengineering of noncoding RNAs for research agents and therapeutics , 2016, Wiley interdisciplinary reviews. RNA.

[42]  B. Schroen,et al.  Long Non-Coding RNA Malat-1 Is Dispensable during Pressure Overload-Induced Cardiac Remodeling and Failure in Mice , 2016, PloS one.

[43]  A. Schambach,et al.  Long noncoding RNA Chast promotes cardiac remodeling , 2016, Science Translational Medicine.

[44]  Junyi Yu,et al.  Circulating 'lncRNA OTTHUMT00000387022' from monocytes as a novel biomarker for coronary artery disease. , 2016, Cardiovascular research.

[45]  S. Crooke,et al.  RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery , 2016, Nucleic acids research.

[46]  P. Jose,et al.  Circulating “LncPPARδ” From Monocytes as a Novel Biomarker for Coronary Artery Diseases , 2016, Medicine.

[47]  C. Caldas,et al.  Double-stranded microRNA mimics can induce length- and passenger strand–dependent effects in a cell type–specific manner , 2016, RNA.

[48]  S. Freier,et al.  Natural antisense RNA promotes 3′ end processing and maturation of MALAT1 lncRNA , 2016, Nucleic acids research.

[49]  Finding function in mystery transcripts , 2016, Nature.

[50]  E. Creemers,et al.  Function and Therapeutic Potential of Noncoding RNAs in Cardiac Fibrosis. , 2016, Circulation research.

[51]  Y. Suárez,et al.  VEGF-Induced Expression of miR-17–92 Cluster in Endothelial Cells Is Mediated by ERK/ELK1 Activation and Regulates Angiogenesis , 2016, Circulation research.

[52]  M. Behlke,et al.  Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides , 2015, Nucleic acids research.

[53]  B. Gloss,et al.  The specificity of long noncoding RNA expression. , 2016, Biochimica et biophysica acta.

[54]  Daniel G. Anderson,et al.  Myocardial Delivery of Lipidoid Nanoparticle Carrying modRNA Induces Rapid and Transient Expression. , 2016, Molecular therapy : the journal of the American Society of Gene Therapy.

[55]  K. Sanbonmatsu Towards structural classification of long non-coding RNAs. , 2016, Biochimica et biophysica acta.

[56]  S. Nakagawa Lessons from reverse-genetic studies of lncRNAs. , 2016, Biochimica et biophysica acta.

[57]  Piero Carninci,et al.  Discovery and functional analysis of lncRNAs: Methodologies to investigate an uncharacterized transcriptome. , 2016, Biochimica et biophysica acta.

[58]  J. Wilusz Long noncoding RNAs: Re-writing dogmas of RNA processing and stability. , 2016, Biochimica et biophysica acta.

[59]  O. Merkel,et al.  Tackling breast cancer chemoresistance with nano-formulated siRNA , 2016, Gene Therapy.

[60]  A. Hoes,et al.  2016 European Guidelines on cardiovascular disease prevention in clinical practice. , 2016, Revista espanola de cardiologia.

[61]  Charles S Bond,et al.  The ins and outs of lncRNA structure: How, why and what comes next? , 2016, Biochimica et biophysica acta.

[62]  S. Nakagawa,et al.  Clues to long noncoding RNA taxonomy. , 2016, Biochimica et biophysica acta.

[63]  L. D. de Windt,et al.  Antisense MicroRNA Therapeutics in Cardiovascular Disease: Quo Vadis? , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[64]  R. Guigó,et al.  CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. , 2015, Journal of molecular and cellular cardiology.

[65]  A. Schober,et al.  MicroRNA-specific regulatory mechanisms in atherosclerosis. , 2015, Journal of molecular and cellular cardiology.

[66]  Thomas Thum,et al.  Development of Long Noncoding RNA-Based Strategies to Modulate Tissue Vascularization , 2015, Journal of the American College of Cardiology.

[67]  R. de Cabo,et al.  Identification of miR-148a as a novel regulator of cholesterol metabolism , 2015, Nature Medicine.

[68]  Klaus Pantel,et al.  Data Normalization Strategies for MicroRNA Quantification. , 2015, Clinical chemistry.

[69]  R. Krauss,et al.  Proprotein convertase subtilisin/kexin type 9 inhibition: a new therapeutic mechanism for reducing cardiovascular disease risk. , 2015, Circulation.

[70]  A. Zeiher,et al.  Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA. , 2015, Circulation research.

[71]  Nikolaus Rajewsky,et al.  Identification and Characterization of Circular RNAs As a New Class of Putative Biomarkers in Human Blood , 2015, PloS one.

[72]  E. Stroes,et al.  A sense of excitement for a specific Lp(a)-lowering therapy , 2015, The Lancet.

[73]  J. Witztum,et al.  Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study , 2015, The Lancet.

[74]  P. Jose,et al.  Plasma long non-coding RNA, CoroMarker, a novel biomarker for diagnosis of coronary artery disease. , 2015, Clinical science.

[75]  R. Hegele,et al.  Trial Watch: Antisenses working overtime in lipids , 2015, Nature Reviews Endocrinology.

[76]  Z. Szallasi,et al.  CAUSEL: An epigenome and genome editing pipeline for establishing function of non-coding GWAS variants , 2015, Nature Medicine.

[77]  Yu Zhang,et al.  siRNA Versus miRNA as Therapeutics for Gene Silencing , 2015, Molecular therapy. Nucleic acids.

[78]  J. Lieberman,et al.  Knocking down disease: a progress report on siRNA therapeutics , 2015, Nature Reviews Genetics.

[79]  R. Tekade,et al.  Nanocarriers Assisted siRNA Gene Therapy for the Management of Cardiovascular Disorders. , 2015, Current pharmaceutical design.

[80]  Sabine C. Mueller,et al.  Influence of next-generation sequencing and storage conditions on miRNA patterns generated from PAXgene blood. , 2015, Analytical chemistry.

[81]  中山 幸輝 A long noncoding RNA protects the heart from pathological hypertrophy , 2015 .

[82]  Trees-Juen Chuang,et al.  Biogenesis, identification, and function of exonic circular RNAs , 2015, Wiley interdisciplinary reviews. RNA.

[83]  Judy Lieberman,et al.  Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown , 2015, Nature Biotechnology.

[84]  S. Verjovski-Almeida,et al.  Global analysis of biogenesis, stability and sub-cellular localization of lncRNAs mapping to intragenic regions of the human genome , 2015, RNA biology.

[85]  Jiang-xia Zhao,et al.  Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis , 2015, Cell Research.

[86]  M. Halushka,et al.  Extracellular vesicle microRNA transfer in cardiovascular disease. , 2015, Cardiovascular pathology : the official journal of the Society for Cardiovascular Pathology.

[87]  B. Schroen,et al.  Long noncoding RNAs in cardiac development and ageing , 2015, Nature Reviews Cardiology.

[88]  Charles P. Lin,et al.  Silencing of CCR2 in myocarditis. , 2015, European heart journal.

[89]  Q. Ning,et al.  Losartan reverses the down-expression of long noncoding RNA-NR024118 and Cdkn1c induced by angiotensin II in adult rat cardiac fibroblasts. , 2015, Pathologie-biologie.

[90]  C. Newton-Cheh,et al.  Genome-wide association studies of late-onset cardiovascular disease. , 2015, Journal of molecular and cellular cardiology.

[91]  A. Schober,et al.  MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis , 2015, Nature Reviews Cardiology.

[92]  A. Schober,et al.  Chemokines and microRNAs in atherosclerosis , 2015, Cellular and Molecular Life Sciences.

[93]  Alexander J. Federation,et al.  RNA Exosome-Regulated Long Non-Coding RNA Transcription Controls Super-Enhancer Activity , 2015, Cell.

[94]  M. Dirin,et al.  Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[95]  Igor Ulitsky,et al.  Methods for distinguishing between protein-coding and long noncoding RNAs and the elusive biological purpose of translation of long noncoding RNAs , 2015, bioRxiv.

[96]  N. Snead,et al.  Lipid nanoparticle siRNA treatment of Ebola virus Makona infected nonhuman primates , 2015, Nature.

[97]  P. Talmud,et al.  Identifying functional noncoding variants from genome-wide association studies for cardiovascular disease and related traits , 2015, Current opinion in lipidology.

[98]  S. Zeng,et al.  A general approach to high-yield biosynthesis of chimeric RNAs bearing various types of functional small RNAs for broad applications , 2015, Nucleic acids research.

[99]  Joel T. Dudley,et al.  Genome-wide significant loci: how important are they? Systems genetics to understand heritability of coronary artery disease and other common complex disorders. , 2015, Journal of the American College of Cardiology.

[100]  S. Dimmeler,et al.  MicroRNAs in myocardial infarction , 2015, Nature Reviews Cardiology.

[101]  M. Leach,et al.  Scientific and Regulatory Policy Committee Points-to-consider Paper* , 2015, Toxicologic pathology.

[102]  G. Condorelli,et al.  Long noncoding RNAs and microRNAs in cardiovascular pathophysiology. , 2015, Circulation research.

[103]  S. Dimmeler,et al.  Long Noncoding RNAs in Cardiovascular Diseases , 2015, Circulation Research.

[104]  Y. Devaux,et al.  Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain , 2015, Journal of internal medicine.

[105]  J. Rinn,et al.  Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution , 2015, Genome Biology.

[106]  B. Suess,et al.  A Universal Aptamer Chimera for the Delivery of Functional microRNA-126. , 2015, Nucleic acid therapeutics.

[107]  Christine S. Siegismund,et al.  Differential Cardiac MicroRNA Expression Predicts the Clinical Course in Human Enterovirus Cardiomyopathy , 2015, Circulation. Heart failure.

[108]  R. Guigó,et al.  Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs , 2014, European heart journal.

[109]  Joachim Thiery,et al.  Comparison of Whole Blood RNA Preservation Tubes and Novel Generation RNA Extraction Kits for Analysis of mRNA and MiRNA Profiles , 2014, PloS one.

[110]  Amy Chan,et al.  Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. , 2014, Journal of the American Chemical Society.

[111]  C. Ramírez,et al.  Relevance of microRNA in metabolic diseases , 2014, Critical reviews in clinical laboratory sciences.

[112]  Thomas Thum,et al.  Noncoding RNAs and myocardial fibrosis , 2014, Nature Reviews Cardiology.

[113]  Guocheng Yuan,et al.  LincRNA-p21 Regulates Neointima Formation, Vascular Smooth Muscle Cell Proliferation, Apoptosis, and Atherosclerosis by Enhancing p53 Activity , 2014, Circulation.

[114]  Q. Jiang,et al.  Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus , 2014, Cell Death and Disease.

[115]  H. Jo,et al.  Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[116]  E. Westhof,et al.  Biogenesis of Circular RNAs , 2014, Cell.

[117]  Y. Devaux,et al.  Long Noncoding RNAs in Patients With Acute Myocardial Infarction , 2014, Circulation research.

[118]  M. Mayr,et al.  "Going long": long non-coding RNAs as biomarkers. , 2014, Circulation research.

[119]  Christina Backes,et al.  Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. , 2014, Clinical chemistry.

[120]  L. Pennacchio,et al.  Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease , 2014, Journal of molecular and cellular cardiology.

[121]  S. Blankenberg,et al.  Assessment of microRNAs in patients with unstable angina pectoris. , 2014, European heart journal.

[122]  L. Goedeke,et al.  microRNAs and HDL life cycle. , 2014, Cardiovascular research.

[123]  T. Tuschl,et al.  Comparative RNA-sequencing analysis of myocardial and circulating small RNAs in human heart failure and their utility as biomarkers , 2014, Proceedings of the National Academy of Sciences.

[124]  E. van Rooij,et al.  Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury , 2014, Cardiovascular research.

[125]  Thomas Thum,et al.  Circulating microRNAs for predicting and monitoring response to mechanical circulatory support from a left ventricular assist device , 2014, European journal of heart failure.

[126]  R. Eritja,et al.  Oligonucleotide delivery: a patent review (2010 – 2013) , 2014, Expert opinion on therapeutic patents.

[127]  George A. Calin,et al.  RNAi Therapies: Drugging the Undruggable , 2014, Science Translational Medicine.

[128]  T. Thum,et al.  The smooth long noncoding RNA SENCR. , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[129]  D. Zheng,et al.  Identification and Initial Functional Characterization of a Human Vascular Cell–Enriched Long Noncoding RNA , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[130]  Shiyou Zhu,et al.  High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells , 2014, Nature.

[131]  F. He,et al.  Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction , 2014, Molecular and Cellular Biochemistry.

[132]  G. Lemesle,et al.  Circulating Long Noncoding RNA, LIPCAR, Predicts Survival in Patients With Heart Failure , 2014, Circulation research.

[133]  S. Dimmeler,et al.  Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth , 2014, Circulation Research.

[134]  D. G. MacArthur,et al.  Guidelines for investigating causality of sequence variants in human disease , 2014, Nature.

[135]  M. Fu,et al.  MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E–Deficient Mice , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[136]  F. Kiessling,et al.  MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1 , 2014, Nature Medicine.

[137]  G. Lemesle,et al.  The Circulating Long Non-Coding RNA LIPCAR Predicts Survival in Heart Failure Patients , 2014 .

[138]  Xiaoying Jiang,et al.  Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. , 2014, International journal of clinical and experimental pathology.

[139]  P. Doevendans,et al.  Inhibition of miR-25 Improves Cardiac Contractility in the Failing Heart , 2014, Nature.

[140]  Jincheng Li,et al.  Mitofusin 1 Is Negatively Regulated by MicroRNA 140 in Cardiomyocyte Apoptosis , 2014, Molecular and Cellular Biology.

[141]  G. Ewald,et al.  Deep RNA Sequencing Reveals Dynamic Regulation of Myocardial Noncoding RNAs in Failing Human Heart and Remodeling With Mechanical Circulatory Support , 2014, Circulation.

[142]  X. Xiao,et al.  Decoding the noncoding transcripts in human heart failure. , 2014, Circulation.

[143]  L. Aravind,et al.  New perspectives on the diversification of the RNA interference system: insights from comparative genomics and small RNA sequencing , 2014, Wiley interdisciplinary reviews. RNA.

[144]  S. Boulkroun,et al.  Inhibition of MicroRNA-92a Prevents Endothelial Dysfunction and Atherosclerosis in Mice , 2014, Circulation research.

[145]  Frank Grützner,et al.  The evolution of lncRNA repertoires and expression patterns in tetrapods , 2014, Nature.

[146]  J. Burnett,et al.  Running interference to lower cholesterol , 2014, The Lancet.

[147]  B. Bettencourt,et al.  Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial , 2014, The Lancet.

[148]  Daniel G. Anderson,et al.  In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. , 2013, Journal of the American College of Cardiology.

[149]  K. Croce,et al.  Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-&kgr;B Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice , 2013, Circulation research.

[150]  K. Morgan,et al.  Allele-specific RNA interference rescues the long-QT syndrome phenotype in human-induced pluripotency stem cell cardiomyocytes , 2013, European heart journal.

[151]  Xiaomin Wang,et al.  Single-target RNA interference for the blockade of multiple interacting proinflammatory and profibrotic pathways in cardiac fibroblasts. , 2014, Journal of molecular and cellular cardiology.

[152]  A. Lusis,et al.  Systems genetics approaches to understand complex traits , 2013, Nature Reviews Genetics.

[153]  E. Cuppen,et al.  Extensive localization of long noncoding RNAs to the cytosol and mono- and polyribosomal complexes , 2014, Genome Biology.

[154]  H. Jo,et al.  The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis , 2013, Nature Communications.

[155]  K. Rapti,et al.  SUMO-1 Gene Transfer Improves Cardiac Function in a Large-Animal Model of Heart Failure , 2013, Science Translational Medicine.

[156]  R. Liao,et al.  MicroRNA-26a Regulates Pathological and Physiological Angiogenesis by Targeting BMP/SMAD1 Signaling , 2013, Circulation research.

[157]  Daniel Anderson,et al.  Delivery materials for siRNA therapeutics. , 2013, Nature materials.

[158]  W. Paulus,et al.  Myocardial Titin Hypophosphorylation Importantly Contributes to Heart Failure With Preserved Ejection Fraction in a Rat Metabolic Risk Model , 2013, Circulation: Heart Failure.

[159]  E. van Rooij,et al.  Inhibition of MicroRNA-92a Protects Against Ischemia/Reperfusion Injury in a Large-Animal Model , 2013, Circulation.

[160]  B. Bettencourt,et al.  Safety and efficacy of RNAi therapy for transthyretin amyloidosis. , 2013, The New England journal of medicine.

[161]  C. Skurk,et al.  Cardiovascular RNA interference therapy: the broadening tool and target spectrum. , 2013, Circulation research.

[162]  Qisheng Peng,et al.  Lentivirus-mediated RNA interference of chymase increases the plaque stability in atherosclerosis in vivo. , 2013, Experimental and molecular pathology.

[163]  Teri A. Manolio,et al.  Bringing genome-wide association findings into clinical use , 2013, Nature Reviews Genetics.

[164]  R. Testa,et al.  Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. , 2013, International journal of cardiology.

[165]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[166]  S. Fichtlscherer,et al.  Heparin selectively affects the quantification of microRNAs in human blood samples. , 2013, Clinical chemistry.

[167]  C. Emanueli,et al.  Local Inhibition of MicroRNA-24 Improves Reparative Angiogenesis and Left Ventricle Remodeling and Function in Mice With Myocardial Infarction , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[168]  Weifeng Wu,et al.  MicroRNA-21 and -146b are involved in the pathogenesis of murine viral myocarditis by regulating TH-17 differentiation , 2013, Archives of Virology.

[169]  A. Schober,et al.  The microRNA-342-5p Fosters Inflammatory Macrophage Activation Through an Akt1- and microRNA-155–Dependent Pathway During Atherosclerosis , 2013, Circulation.

[170]  A. Zeiher,et al.  Immunosenescence‐associated microRNAs in age and heart failure , 2013, European journal of heart failure.

[171]  Daniel G. Anderson,et al.  Monocyte-Directed RNAi Targeting CCR2 Improves Infarct Healing in Atherosclerosis-Prone Mice , 2013, Circulation.

[172]  Howard Y. Chang,et al.  Long Noncoding RNAs: Cellular Address Codes in Development and Disease , 2013, Cell.

[173]  H. Hermeking,et al.  MicroRNA-34a regulates cardiac ageing and function , 2013, Nature.

[174]  M. Mayr,et al.  MicroRNAs Within the Continuum of Postgenomics Biomarker Discovery , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[175]  R. Pepperkok,et al.  RNAi–Based Functional Profiling of Loci from Blood Lipid Genome-Wide Association Studies Identifies Genes with Cholesterol-Regulatory Function , 2013, PLoS genetics.

[176]  R. Bak,et al.  Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors. , 2013, RNA.

[177]  Karen S. Frese,et al.  Refining diagnostic microRNA signatures by whole-miRNome kinetic analysis in acute myocardial infarction. , 2013, Clinical chemistry.

[178]  Vincent L. Butty,et al.  Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment , 2013, Cell.

[179]  R. Bak,et al.  Suppression of microRNAs by dual-targeting and clustered Tough Decoy inhibitors , 2013, RNA biology.

[180]  M. Taupitz,et al.  Rapid binding of electrostatically stabilized iron oxide nanoparticles to THP-1 monocytic cells via interaction with glycosaminoglycans , 2013, Basic Research in Cardiology.

[181]  William Stafford Noble,et al.  Integrative annotation of chromatin elements from ENCODE data , 2012, Nucleic acids research.

[182]  M. Rudin,et al.  Loss of AngiomiR-126 and 130a in Angiogenic Early Outgrowth Cells From Patients With Chronic Heart Failure: Role for Impaired In Vivo Neovascularization and Cardiac Repair Capacity , 2012, Circulation.

[183]  F. Kiessling,et al.  MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. , 2012, The Journal of clinical investigation.

[184]  S. Kauppinen,et al.  Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function , 2012, Proceedings of the National Academy of Sciences.

[185]  T. Ichim,et al.  Induction of Alloimmune Tolerance in Heart Transplantation Through Gene Silencing of TLR Adaptors , 2012, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[186]  Xiaobin Luo,et al.  Role for MicroRNA-21 in Atrial Profibrillatory Fibrotic Remodeling Associated With Experimental Postinfarction Heart Failure , 2012, Circulation. Arrhythmia and electrophysiology.

[187]  M. Al-Omran,et al.  MicroRNA-145 Targeted Therapy Reduces Atherosclerosis , 2012, Circulation.

[188]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[189]  S. Dimmeler,et al.  Atheroprotective mechanisms of shear stress-regulated microRNAs , 2012, Thrombosis and Haemostasis.

[190]  Ross C. Hardison,et al.  Genome-wide Epigenetic Data Facilitate Understanding of Disease Susceptibility Association Studies* , 2012, The Journal of Biological Chemistry.

[191]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[192]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[193]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[194]  Yanjie Lu,et al.  MicroRNA-101 Inhibited Postinfarct Cardiac Fibrosis and Improved Left Ventricular Compliance via the FBJ Osteosarcoma Oncogene/Transforming Growth Factor-&bgr;1 Pathway , 2012, Circulation.

[195]  Stephane Heymans,et al.  MicroRNA Profiling Identifies MicroRNA-155 as an Adverse Mediator of Cardiac Injury and Dysfunction During Acute Viral Myocarditis , 2012, Circulation research.

[196]  M. Mayr,et al.  Prospective study on circulating MicroRNAs and risk of myocardial infarction. , 2012, Journal of the American College of Cardiology.

[197]  Steven P Schwendeman,et al.  Vascular Endothelial Cell-specific MicroRNA-15a Inhibits Angiogenesis in Hindlimb Ischemia*♦ , 2012, The Journal of Biological Chemistry.

[198]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[199]  M. McCrae,et al.  Aberrant expression of microRNA 155 may accelerate cell proliferation by targeting sex‐determining region Y box 6 in hepatocellular carcinoma , 2012, Cancer.

[200]  J. Mattick,et al.  Genome-wide analysis of long noncoding RNA stability , 2012, Genome research.

[201]  T. Boettger,et al.  A New Level of Complexity: The Role of MicroRNAs in Cardiovascular Development , 2012, Circulation research.

[202]  Achilleas S. Frangakis,et al.  Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs , 2012, Nature Cell Biology.

[203]  M. Abdellatif Differential Expression of MicroRNAs in Different Disease States , 2012, Circulation research.

[204]  E. van Rooij,et al.  Developing microRNA therapeutics. , 2012, Circulation research.

[205]  Manuel Mayr,et al.  MicroRNAs in vascular and metabolic disease. , 2012, Circulation research.

[206]  M. Lindholm,et al.  PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. , 2012, Molecular therapy : the journal of the American Society of Gene Therapy.

[207]  T. Katsuya,et al.  Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. , 2012, Atherosclerosis.

[208]  Tetsuo Yoshida,et al.  A potent 2′-O-methylated RNA-based microRNA inhibitor with unique secondary structures , 2012, Nucleic acids research.

[209]  E. Olson,et al.  Inhibition of miR-15 Protects Against Cardiac Ischemic Injury , 2012, Circulation research.

[210]  R. Gambari,et al.  Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. , 2011, Biochemical pharmacology.

[211]  J. Bauersachs,et al.  Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. , 2011, Journal of molecular and cellular cardiology.

[212]  S. Fichtlscherer,et al.  Transcoronary Concentration Gradients of Circulating MicroRNAs , 2011, Circulation.

[213]  M. Torrado,et al.  Targeted Gene-Silencing Reveals the Functional Significance of Myocardin Signaling in the Failing Heart , 2011, PloS one.

[214]  Robert M. Goor,et al.  Assessing and managing risk when sharing aggregate genetic variant data , 2011, Nature Reviews Genetics.

[215]  Daniel G. Anderson,et al.  Therapeutic siRNA silencing in inflammatory monocytes , 2011, Nature Biotechnology.

[216]  E. Kizana,et al.  SUMO1-dependent modulation of SERCA2a in heart failure , 2011, Nature.

[217]  T. Tuschl,et al.  MicroRNA-24 Regulates Vascularity After Myocardial Infarction , 2011, Circulation.

[218]  Hsien-Da Huang,et al.  Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. , 2011, Circulation.

[219]  Barry Greenberg,et al.  Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): A Phase 2 Trial of Intracoronary Gene Therapy of Sarcoplasmic Reticulum Ca2+-ATPase in Patients With Advanced Heart Failure , 2011, Circulation.

[220]  Gang Bao,et al.  MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB , 2011, Cardiology research and practice.

[221]  D. Erlinge,et al.  Cardiospecific microRNA Plasma Levels Correlate with Troponin and Cardiac Function in Patients with ST Elevation Myocardial Infarction, Are Selectively Dependent on Renal Elimination, and Can Be Detected in Urine Samples , 2011, Cardiology.

[222]  L. V. Van Laake,et al.  miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes , 2011, The Journal of experimental medicine.

[223]  I. Bièche,et al.  ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[224]  H. Fechner,et al.  microRNA122-regulated transgene expression increases specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors , 2011, Gene Therapy.

[225]  E. Rooij,et al.  The Art of MicroRNA Research , 2011 .

[226]  S. Steinhubl,et al.  New Drugs and Technologies , 2014 .

[227]  W. Zimmermann,et al.  Common MicroRNA Signatures in Cardiac Hypertrophic and Atrophic Remodeling Induced by Changes in Hemodynamic Load , 2010, PloS one.

[228]  Jan A Staessen,et al.  Circulating MicroRNA-208b and MicroRNA-499 Reflect Myocardial Damage in Cardiovascular Disease , 2010, Circulation. Cardiovascular genetics.

[229]  Fabio Martelli,et al.  MicroRNA-210 as a Novel Therapy for Treatment of Ischemic Heart Disease , 2010, Circulation.

[230]  John J Rossi,et al.  Biogenesis and function of endogenous and exogenous siRNAs , 2010, Wiley interdisciplinary reviews. RNA.

[231]  Federica Limana,et al.  Circulating microRNAs are new and sensitive biomarkers of myocardial infarction , 2010, European Heart Journal.

[232]  M. Toloue,et al.  Delivery of RNAi mediators , 2010, Wiley interdisciplinary reviews. RNA.

[233]  T. V. van Berkel,et al.  The peripheral blood mononuclear cell microRNA signature of coronary artery disease. , 2010, Biochemical and biophysical research communications.

[234]  Yue Li,et al.  Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. , 2010, European heart journal.

[235]  J. Mattick,et al.  A global view of genomic information--moving beyond the gene and the master regulator. , 2010, Trends in genetics : TIG.

[236]  Hugo A. Katus,et al.  MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction , 2010, Basic Research in Cardiology.

[237]  M. Hristov,et al.  Delivery of MicroRNA-126 by Apoptotic Bodies Induces CXCL12-Dependent Vascular Protection , 2009, Science Signaling.

[238]  Xiaomin Wang,et al.  Prevention of Cardiac Dysfunction in Acute Coxsackievirus B3 Cardiomyopathy by Inducible Expression of a Soluble Coxsackievirus-Adenovirus Receptor , 2009, Circulation.

[239]  Sudhiranjan Gupta,et al.  Silencing the myotrophin gene by RNA interference leads to the regression of cardiac hypertrophy. , 2009, American journal of physiology. Heart and circulatory physiology.

[240]  Stefanie Dimmeler,et al.  MicroRNA-92a Controls Angiogenesis and Functional Recovery of Ischemic Tissues in Mice , 2009, Science.

[241]  P. O’Reilly,et al.  Genome-wide association study identifies eight loci associated with blood pressure , 2009, Nature Genetics.

[242]  G. Boysen,et al.  European Guidelines on Cardiovascular Disease Prevention , 2009, International journal of stroke : official journal of the International Stroke Society.

[243]  Da-Zhi Wang,et al.  A myocardium tropic adeno-associated virus (AAV) evolved by DNA shuffling and in vivo selection , 2009, Proceedings of the National Academy of Sciences.

[244]  Derek J Van Booven,et al.  Reciprocal Regulation of Myocardial microRNAs and Messenger RNA in Human Cardiomyopathy and Reversal of the microRNA Signature by Biomechanical Support , 2009, Circulation.

[245]  V. Erdmann,et al.  Long-Term Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy , 2009, Circulation.

[246]  H. Iba,et al.  Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells , 2009, Nucleic acids research.

[247]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[248]  David L. Spector,et al.  3′ End Processing of a Long Nuclear-Retained Noncoding RNA Yields a tRNA-like Cytoplasmic RNA , 2008, Cell.

[249]  H. Sweeney,et al.  Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. , 2008, Human gene therapy.

[250]  X. Chen,et al.  Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases , 2008, Cell Research.

[251]  Robert Langer,et al.  Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates , 2008, Proceedings of the National Academy of Sciences.

[252]  Danish Sayed,et al.  MicroRNA-21 targets Sprouty2 and promotes cellular outgrowths. , 2008, Molecular biology of the cell.

[253]  Daniel B. Martin,et al.  Circulating microRNAs as stable blood-based markers for cancer detection , 2008, Proceedings of the National Academy of Sciences.

[254]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[255]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[256]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[257]  Thomas Thum,et al.  MicroRNAs in the Human Heart: A Clue to Fetal Gene Reprogramming in Heart Failure , 2007, Circulation.

[258]  P. Zamore RNA Interference: Big Applause for Silencing in Stockholm , 2006, Cell.

[259]  T. Conlon,et al.  Recombinant Adeno-Associated Virus Serotype 9 Leads to Preferential Cardiac Transduction In Vivo , 2006, Circulation research.

[260]  Theresa A. Storm,et al.  Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. , 2006, Molecular therapy : the journal of the American Society of Gene Therapy.

[261]  James M. Wilson,et al.  High-Level Transgene Expression in Nonhuman Primate Liver with Novel Adeno-Associated Virus Serotypes Containing Self-Complementary Genomes , 2006, Journal of Virology.

[262]  Theresa A. Storm,et al.  Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways , 2006, Nature.

[263]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[264]  V. Erdmann,et al.  Comparison of different antisense strategies in mammalian cells using locked nucleic acids, 2'-O-methyl RNA, phosphorothioates and small interfering RNA. , 2003, Nucleic acids research.

[265]  Lili Wang,et al.  Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[266]  T. Tuschl,et al.  Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells , 2001, Nature.

[267]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.