On the lifetime of wireless sensor networks

We derive a general formula for the lifetime-of wireless sensor networks which holds independently of the underlying network model including network architecture and protocol, data collection initiation, lifetime definition, channel fading characteristics, and energy consumption model. This formula identifies two key parameters at the physical layer that affect the network lifetime: the channel state and the residual energy of sensors. As a result, it provides not only a gauge for performance evaluation of sensor networks but also a guideline for the design of network protocols. Based on this formula, we propose a medium access control protocol that exploits both the channel state information and the residual energy information of individual sensors. Referred to as the max-min approach, this protocol maximizes the minimum residual energy across the network in each data collection.

[1]  Yunxia Chen,et al.  Maximizing the Lifetime of Sensor Network Using Local Information on Channel State and Residual Energy , 2005 .

[2]  Anantha Chandrakasan,et al.  Bounding the lifetime of sensor networks via optimal role assignments , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[3]  Jennifer C. Hou,et al.  On deriving the upper bound of α-lifetime for large sensor networks , 2004, MobiHoc '04.

[4]  Baochun Li,et al.  On the fundamental capacity and lifetime limits of energy-constrained wireless sensor networks , 2004, Proceedings. RTAS 2004. 10th IEEE Real-Time and Embedded Technology and Applications Symposium, 2004..

[5]  Anantha Chandrakasan,et al.  Upper bounds on the lifetime of sensor networks , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).