From Bialgebraic Semantics to Congruence Formats

A general and abstract framework to defining congruence formats for various process equivalences is presented. The framework extends bialgebraic techniques of Turi and Plotkin with an abstract coalgebraic approach to process equivalence, based on a notion of test suite. The resulting technique is illustrated on the example of completed trace equivalence. Rather than providing formal proofs, the paper is guiding the reader through the process of deriving a congruence format in the test suite approach.

[1]  Albert R. Meyer,et al.  Bisimulation can't be traced , 1988, POPL '88.

[2]  Bartek Klin,et al.  An Abstract Coalgebraic Approach to Process Equivalence for Well-Behaved Operational Semantics , 2004 .

[3]  F. Bartels,et al.  On Generalised Coinduction and Probabilistic Specification Formats , 2004 .

[4]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[5]  Mogens Nielsen,et al.  A calculus of communicating systems with label passing - ten years after , 1986, Proof, Language, and Interaction.

[6]  Robin Milner,et al.  Algebraic laws for nondeterminism and concurrency , 1985, JACM.

[7]  Gordon D. Plotkin,et al.  The origins of structural operational semantics , 2004, J. Log. Algebraic Methods Program..

[8]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[9]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[10]  Bart Jacobs,et al.  Structural Induction and Coinduction in a Fibrational Setting , 1998, Inf. Comput..

[11]  J. C. M. Baeten,et al.  Process Algebra: Bibliography , 1990 .

[12]  Davide Sangiorgi,et al.  Communicating and Mobile Systems: the π-calculus, , 2000 .

[13]  Robin Milner,et al.  Communicating and mobile systems - the Pi-calculus , 1999 .

[14]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[15]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[16]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[17]  Wan Fokkink,et al.  Compositionality of Hennessy-Milner Logic through Structural Operational Semantics , 2003, FCT.

[18]  Gordon D. Plotkin,et al.  Towards a mathematical operational semantics , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[19]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum I , 2001, Handbook of Process Algebra.

[20]  J. Bergstra,et al.  Handbook of Process Algebra , 2001 .

[21]  Vincent Danos,et al.  Formal Molecular Biology done in CCS , 2003 .

[22]  C. A. R. Hoare,et al.  A Theory of Communicating Sequential Processes , 1984, JACM.

[23]  Falk Bartels,et al.  GSOS for Probabilistic Transition Systems , 2002, CMCS.

[24]  Jan A. Bergstra,et al.  Process Algebra for Synchronous Communication , 1984, Inf. Control..

[25]  Bartek Klin,et al.  Syntactic formats for free: An abstract approach to process equivalence , 2003 .

[26]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[27]  S. Lane Categories for the Working Mathematician , 1971 .

[28]  Marco Kick Rule Formats for Timed Processes , 2002, Electron. Notes Theor. Comput. Sci..

[29]  Matthew Hennessy,et al.  Algebraic theory of processes , 1988, MIT Press series in the foundations of computing.

[30]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[31]  Bart Jacobs,et al.  Simulations in Coalgebra , 2003, CMCS.

[32]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[33]  Michael Mendler,et al.  An Asynchronous Algebra with Multiple Clocks , 1994, ESOP.

[34]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[35]  Wan Fokkink,et al.  Precongruence formats for decorated trace semantics , 2002, TOCL.