Block-structured grids in full velocity space for Eulerian gyrokinetic simulations
暂无分享,去创建一个
Hans-Joachim Bungartz | Frank Jenko | Tobias Neckel | D. Jarema | Tobias Görler | D. Told | H. Bungartz | F. Jenko | T. Neckel | D. Told | T. Görler | D. Jarema | Denis Jarema | Daniel Told
[1] J. Cary,et al. Noncanonical Hamiltonian mechanics and its application to magnetic field line flow , 1983 .
[2] Gerhard Goos,et al. Euro-Par 2014: Parallel Processing Workshops , 2014, Lecture Notes in Computer Science.
[3] B. M. Fulk. MATH , 1992 .
[4] Eloy Romero,et al. Multi-dimensional gyrokinetic parameter studies based on eigenvalue computations , 2012, Comput. Phys. Commun..
[5] W. D’haeseleer,et al. Flux Coordinates and Magnetic Field Structure , 1991 .
[6] Gianluca Iaccarino,et al. An approach to local refinement of structured grids , 2002 .
[7] Frank Jenko,et al. The global version of the gyrokinetic turbulence code GENE , 2011, J. Comput. Phys..
[8] Daniel Told,et al. Gyrokinetic microturbulence in transport barriers , 2012 .
[9] Alain J. Brizard,et al. Foundations of Nonlinear Gyrokinetic Theory , 2007 .
[10] Scott E. Parker,et al. A δ f particle method for gyrokinetic simulations with kinetic electrons and electromagnetic perturbations , 2003 .
[11] Frank Jenko,et al. Electron temperature gradient driven turbulence , 1999 .
[12] Richard E. Denton,et al. {delta}f Algorithm , 1993 .
[13] Vladimir Tikhonchuk,et al. Fokker-Planck kinetic modeling of suprathermal α-particles in a fusion plasma , 2014, J. Comput. Phys..
[14] T. Görler,et al. Multiscale effects in plasma microturbulence , 2010 .
[15] H. Doerk,et al. Gyrokinetic simulation of microtearing turbulence , 2013 .
[16] Christoph Kowitz. Applying the Sparse Grid Combination Technique in Linear Gyrokinetics , 2016 .
[17] WALTER GAUTSCHI. Algorithm 726: ORTHPOL–a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules , 1994, TOMS.
[18] Robert G. Littlejohn,et al. Hamiltonian formulation of guiding center motion , 1981 .
[19] Ericka Stricklin-Parker,et al. Ann , 2005 .
[20] T. Görler,et al. Block-structured grids for Eulerian gyrokinetic simulations , 2016, Comput. Phys. Commun..
[21] Dirk Pflüger,et al. Towards a Fault-Tolerant, Scalable Implementation of GENE , 2015 .
[22] R. J. Hastie,et al. High mode number stability of an axisymmetric toroidal plasma , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[23] Olivier Larroche. An efficient explicit numerical scheme for diffusion-type equations with a highly inhomogeneous and highly anisotropic diffusion tensor , 2007, J. Comput. Phys..
[24] X. Lapillonne,et al. Local and Global Eulerian Gyrokinetic Simulations of Microturbulence in Realistic Geometry with Applications to the TCV Tokamak , 2010 .
[25] Jirí Hrebícek,et al. Solving Problems in Scientific Computing Using Maple and MATLAB® , 2004, Springer Berlin Heidelberg.
[26] Gregor E. Morfill,et al. On the possibility of collective attraction in complex plasmas , 2010 .
[27] Richard E. Denton,et al. δf Algorithm , 1995 .
[28] Mike Kotschenreuther,et al. Comparison of initial value and eigenvalue codes for kinetic toroidal plasma instabilities , 1995 .