Singularity-Free and Cosmologically Viable Born-Infeld Gravity with Scalar Matter

The early cosmology, driven by a single scalar field, both massless and massive, in the context of Eddington-inspired Born-Infeld gravity, is explored. We show the existence of nonsingular solutions of bouncing and loitering type (depending on the sign of the gravitational theory’s parameter, ϵ) replacing the Big Bang singularity, and discuss their properties. In addition, in the massive case, we find some new features of the cosmological evolution depending on the value of the mass parameter, including asymmetries in the expansion/contraction phases, or a continuous transition between a contracting phase to an expanding one via an intermediate loitering phase. We also provide a combined analysis of cosmic chronometers, standard candles, BAO, and CMB data to constrain the model, finding that for roughly |ϵ|≲5·10−8m2 the model is compatible with the latest observations while successfully removing the Big Bang singularity. This bound is several orders of magnitude stronger than the most stringent constraints currently available in the literature.

[1]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[2]  A. Myers,et al.  Baryon Acoustic Oscillations in the Ly-\alpha\ forest of BOSS quasars , 2012, 1211.2616.

[3]  M. Ronco,et al.  Observable traces of non-metricity: New constraints on metric-affine gravity , 2017, 1709.04249.

[4]  D. Rubiera-García,et al.  Scalar geons in Born-Infeld gravity , 2017, 1705.01065.

[5]  J. Brinchmann,et al.  Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes , 2020, Astronomy & Astrophysics.

[6]  Ashley J. Ross,et al.  The clustering of the SDSS DR7 Main Galaxy Sample I: a 4 per cent distance measure at z=0.15 , 2014, 1409.3242.

[7]  A. Rinaldi The phantom menace , 2006, EMBO reports.

[8]  J. Barrow,et al.  Inflation and the Conformal Structure of Higher Order Gravity Theories , 1988 .

[9]  P. Ferreira,et al.  Tensor instability in the Eddington-inspired Born-Infeld theory of gravity , 2012, 1204.1691.

[10]  A. Cimatti,et al.  New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to z~1.75 , 2012, 1201.6658.

[11]  W. Percival,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: galaxy clustering measurements in the low-redshift sample of Data Release 11 , 2014, 1401.1768.

[12]  Ke Yang,et al.  Domain wall brane in Eddington-inspired Born-Infeld gravity , 2012, 1203.2349.

[13]  P. Peebles,et al.  Cosmological consequences of a rolling homogeneous scalar field. , 1988, Physical review. D, Particles and fields.

[14]  Adrià Delhom Minimal coupling in presence of non-metricity and torsion , 2020, The European Physical Journal C.

[15]  L. Heisenberg,et al.  A systematic approach to generalisations of General Relativity and their cosmological implications , 2018, Physics Reports.

[16]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[17]  Rajibul Shaikh,et al.  Wormholes with nonexotic matter in Born-Infeld gravity , 2018, Physical Review D.

[18]  V. Oikonomou,et al.  The phase space of k-Essence f(R) gravity theory , 2019, Nuclear Physics B.

[19]  C. Boehmer,et al.  The regular black hole in four dimensional Born–Infeld gravity , 2019, Classical and Quantum Gravity.

[20]  S. Tsujikawa Quintessence: a review , 2013, 1304.1961.

[21]  S. Capozziello,et al.  Extended Theories of Gravity , 2011, 1108.6266.

[22]  Jose Beltrán Jiménez,et al.  Ghosts in metric-affine higher order curvature gravity , 2019, The European Physical Journal C.

[23]  J. B. Jiménez,et al.  Instabilities in metric-affine theories of gravity with higher order curvature terms , 2020, The European Physical Journal C.

[24]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[25]  Antony Lewis,et al.  GetDist: a Python package for analysing Monte Carlo samples , 2019, 1910.13970.

[26]  Adam D. Myers,et al.  Baryon Acoustic Oscillations in the Lyforest of BOSS quasars , 2012 .

[27]  R. Barkana,et al.  Cold and Fuzzy Dark Matter , 2000, astro-ph/0003365.

[28]  C. Barragán,et al.  Isotropic and Anisotropic Bouncing Cosmologies in Palatini Gravity , 2010, 1005.4136.

[29]  A. Loeb,et al.  Constraining Cosmological Parameters Based on Relative Galaxy Ages , 2001, astro-ph/0106145.

[30]  S. Choudhury,et al.  Large non-Gaussianities from DBI Galileon and resolution of sensitivity problem , 2012 .

[31]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[32]  E. Elizalde,et al.  Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields , 2008, 0803.1311.

[33]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[34]  S. Choudhury,et al.  DBI Galileon inflation in background SUGRA , 2012, 1208.4433.

[35]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[36]  J. Barrow The premature recollapse problem in closed inflationary universes , 1988 .

[37]  B. Garilli,et al.  Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers , 2012, 1201.3609.

[38]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[39]  Fotios Anagnostopoulos,et al.  Dark energy and dark matter unification from dynamical space time: observational constraints and cosmological implications , 2019, Journal of Cosmology and Astroparticle Physics.

[40]  P. Ferreira,et al.  Eddington's theory of gravity and its progeny. , 2010, Physical review letters.

[41]  David Schlegel,et al.  ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES , 2012, 1201.2172.

[42]  A review , 2019 .

[43]  E. Guendelman,et al.  Unified dark energy and dark matter from dynamical spacetime , 2018, Physical Review D.

[44]  S. Tsujikawa,et al.  f(R) Theories , 2010, Living reviews in relativity.

[45]  A. Heavens,et al.  Beyond ΛCDM: Problems, solutions, and the road ahead , 2015, 1512.05356.

[46]  H. S. Xavier,et al.  Angular Baryon Acoustic Oscillation measure at z=2.225 from the SDSS quasar survey , 2017, 1709.00113.

[47]  E. Guendelman,et al.  Interacting diffusive unified dark energy and dark matter from scalar fields , 2017, 1701.08667.

[48]  J. Kehayias,et al.  New generic evolution for k -essence dark energy with w≈−1 , 2019, Physical Review D.

[49]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[50]  J. Solà,et al.  First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model , 2016, 1602.02103.

[51]  M. P. Hobson,et al.  polychord: nested sampling for cosmology , 2015, Monthly Notices of the Royal Astronomical Society: Letters.

[52]  David Tong,et al.  DBI in the sky , 2004 .

[53]  D. Staicova,et al.  Testing Low-Redshift Cosmic Acceleration with the Complete Baryon Acoustic Oscillations data collection , 2020, 2009.10701.

[54]  A. Khodam-Mohammadi,et al.  Observational tests of Gauss-Bonnet like dark energy model , 2019, The European Physical Journal Plus.

[55]  Ke Yang,et al.  Black hole solution and strong gravitational lensing in Eddington-inspired Born–Infeld gravity , 2014, 1405.2178.

[56]  David O. Jones,et al.  The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample , 2017, The Astrophysical Journal.

[57]  D. Sawant,et al.  Cosmology with gamma-ray bursts: I. The Hubble diagram through the calibrated $E_{\rm p,i}$ - $E_{\rm iso}$ correlation , 2016, 1610.00854.

[58]  E. Saridakis,et al.  Observational constraints on Barrow holographic dark energy , 2020, The European Physical Journal C.

[59]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[60]  Limin Wang,et al.  Quintessence, cosmic coincidence, and the cosmological constant , 1999 .

[61]  T. Harko,et al.  Structure of neutron, quark and exotic stars in Eddington-inspired Born-Infeld gravity , 2013, 1305.6770.

[62]  A. Sulaksono,et al.  Neutron stars in the braneworld within the Eddington-inspired Born-Infeld gravity , 2017, 1708.04837.

[63]  MON , 2020, Catalysis from A to Z.

[64]  A. Starobinsky,et al.  A new type of isotropic cosmological models without singularity , 1980 .

[65]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[66]  Michele Moresco Raising the bar: new constraints on the Hubble parameter with cosmic chronometers at z ∼ 2 , 2015, 1503.01116.

[67]  Paul J. Steinhardt,et al.  Cosmological imprint of an energy component with general equation of state , 1998 .

[68]  S. Mohanty,et al.  Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817A , 2017, 1711.04137.

[69]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[70]  D. Rubiera-García,et al.  Mapping Ricci-based theories of gravity into general relativity , 2018, 1801.10406.

[71]  D. Rubiera-García,et al.  On gravitational waves in Born-Infeld inspired non-singular cosmologies , 2017, Journal of Cosmology and Astroparticle Physics.

[72]  P. Avelino,et al.  Bouncing Eddington-inspired Born-Infeld cosmologies: An alternative to inflation? , 2012, 1205.6676.

[73]  J. Jim'enez,et al.  Born-Infeld Gravity: Constraints from Light-by-Light Scattering and an Effective Field Theory Perspective , 2021, 2104.01647.

[74]  Daniel Thomas,et al.  A 6% measurement of the Hubble parameter at z∼0.45: direct evidence of the epoch of cosmic re-acceleration , 2016, 1601.01701.

[75]  A. Myers,et al.  The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First measurement of baryon acoustic oscillations between redshift 0.8 and 2.2 , 2017, 1705.06373.

[76]  이현주 Q. , 2005 .

[77]  P. Avelino Inner Structure of Black Holes in Eddington-inspired Born-Infeld gravity: the role of mass inflation , 2015, 1511.03223.

[78]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[79]  Anandamohan Ghosh,et al.  Dynamical systems analysis of a k -essence model , 2019, Physical Review D.

[80]  A. Peñuelas,et al.  Effective interactions in Ricci-Based Gravity below the non-metricity scale , 2019, The European Physical Journal C.

[81]  Ashley J. Ross,et al.  The SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at Redshift of 0.72 with the DR14 Luminous Red Galaxy Sample , 2017, The Astrophysical Journal.

[82]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[83]  Pisin Chen,et al.  Black hole solutions in mimetic Born-Infeld gravity , 2017, The European Physical Journal C.

[84]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[85]  R. Shaikh Lorentzian wormholes in Eddington-inspired Born-Infeld gravity , 2015, 1505.01314.

[86]  Viatcheslav Mukhanov,et al.  Quantum Fluctuations and a Nonsingular Universe , 1981 .

[87]  A. Starobinsky Spectrum of relict gravitational radiation and the early state of the universe , 1979 .

[88]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample , 2012, 1203.6594.

[89]  D. Garfinkle,et al.  The 1965 Penrose singularity theorem , 2014, 1410.5226.

[90]  V. Oikonomou,et al.  Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution , 2017, 1705.11098.

[91]  A. Vikman,et al.  Recovering P(X) from a canonical complex field , 2018, Journal of Cosmology and Astroparticle Physics.

[92]  T. Chiba,et al.  Kinetically driven quintessence , 1999, astro-ph/9912463.

[93]  L. Heisenberg,et al.  Born–Infeld inspired modifications of gravity , 2017, 1704.03351.

[94]  B. Yanny,et al.  Dark Energy Survey Year 1 results: measurement of the baryon acoustic oscillation scale in the distribution of galaxies to redshift 1 , 2017, Monthly Notices of the Royal Astronomical Society.

[95]  Zbigniew Haba,et al.  Unification of dark energy and dark matter from diffusive cosmology , 2019, Physical Review D.

[96]  L. Crispino,et al.  Absorption by black hole remnants in metric-affine gravity , 2019, Physical Review D.

[97]  J. Barrow,et al.  Big Bang Nucleosynthesis constraints on Barrow entropy , 2020, Physics Letters B.

[98]  O. Bertolami,et al.  Generalized Chaplygin Gas, Accelerated Expansion and Dark Energy-Matter Unification , 2002, gr-qc/0202064.

[99]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[100]  J. Jim'enez,et al.  Anisotropic deformations in a class of projectively-invariant metric-affine theories of gravity , 2020, Classical and Quantum Gravity.