Irrelevant Features and the Subset Selection Problem

[1]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[2]  Pat Langley,et al.  Oblivious Decision Trees and Abstract Cases , 1994 .

[3]  David B. Skalak,et al.  Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms , 1994, ICML.

[4]  Andrew W. Moore,et al.  Efficient Algorithms for Minimizing Cross Validation Error , 1994, ICML.

[5]  Rich Caruana,et al.  Greedy Attribute Selection , 1994, ICML.

[6]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[7]  Claire Cardie,et al.  Using Decision Trees to Improve Case-Based Learning , 1993, ICML.

[8]  Maciej Modrzejewski,et al.  Feature Selection Using Rough Sets Theory , 1993, ECML.

[9]  Kenneth A. De Jong,et al.  Genetic algorithms as a tool for feature selection in machine learning , 1992, Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI '92.

[10]  Larry A. Rendell,et al.  The Feature Selection Problem: Traditional Methods and a New Algorithm , 1992, AAAI.

[11]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[12]  Sebastian Thrun,et al.  The MONK''s Problems-A Performance Comparison of Different Learning Algorithms, CMU-CS-91-197, Sch , 1991 .

[13]  Thomas G. Dietterich,et al.  Learning with Many Irrelevant Features , 1991, AAAI.

[14]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[15]  Pat Langley,et al.  Models of Incremental Concept Formation , 1990, Artif. Intell..

[16]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[17]  Lei Xu,et al.  Best first strategy for feature selection , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[18]  Jack Sklansky,et al.  On Automatic Feature Selection , 1988, Int. J. Pattern Recognit. Artif. Intell..

[19]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[20]  C. S. Wallace,et al.  Estimation and Inference by Compact Coding , 1987 .

[21]  J. Rissanen Stochastic Complexity and Modeling , 1986 .

[22]  Stuart J. Russell Preliminary Steps Toward the Automation of Induction , 1986, AAAI.

[23]  Bernard M. E. Moret,et al.  Decision Trees and Diagrams , 1982, CSUR.

[24]  Temple F. Smith Occam's razor , 1980, Nature.

[25]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[26]  V. Barnett,et al.  Applied Linear Statistical Models , 1975 .

[27]  Anthony N. Mucciardi,et al.  A Comparison of Seven Techniques for Choosing Subsets of Pattern Recognition Properties , 1971, IEEE Transactions on Computers.

[28]  William W. Cohen Efficient Pruning Methods for Separate-and-Conquer Rule Learning Systems , 1993, IJCAI.

[29]  Jeffrey C. Schlimmer,et al.  Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning , 1993, ICML.

[30]  A. Atkinson Subset Selection in Regression , 1992 .

[31]  Sturart J. Russell,et al.  The use of knowledge in analogy and induction , 1989 .

[32]  Moshe Ben-Bassat,et al.  35 Use of distance measures, information measures and error bounds in feature evaluation , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[33]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[34]  David E. Boyce,et al.  Optimal Subset Selection , 1974 .

[35]  C. L. Mallows Some comments on C_p , 1973 .

[36]  Thomas Marill,et al.  On the effectiveness of receptors in recognition systems , 1963, IEEE Trans. Inf. Theory.