Optimal interval enclosures for fractionally-linear functions, and their application to intelligent control

One of the main problems of interval computations is, given a functionf(x1, ...,xn) andn intervals x1, ..., xn, to compute the range y=f(x1, ..., xn). This problem is feasible for linear functionsf, but for generic polynomials, it is known to be computationally intractable. Because of that, traditional interval techniques usually compute theenclosure of y, i.e., an interval that contains y. The closer this enclosure to y, the better. It is desirable to describe cases in which we can compute theoptimal enclosure, i.e., the range itself.In this paper, we describe a feasible algorithm for computing the optimal enclosure forfractionally linear functionsf. Applications of this result tointelligent control are described.AbstractОдна из основных задач интервальных вычислений формулируется следуюим образом: дана функцияf(x1, ...,xn) иn интервалов x1, ..., xn; требуется вычислить множество значений y=f(x1, ..., xn). Эта задача имеет смысл для линейных функцийf, однако известно, что для обобщенных многочленов она вычислительно неразрецима. Поэтому традиционные интервальные методы, как правило, вычисляютвклчеuе y, т.е. интервал, содержащий в себе y. Чем ближе это включение к y, тем лучще. Желательно найти случаи, в которых возможно вычислитьоnmuмлъое вклчеue, т.е. само множество значений.В работе описан адгоритм, лопускающий практическую реализацию, для вычисления оптимального включениябробно-лцных функцийf. Описаны приложения этого результата в областннмеллекмуалъно¶rt; управленцн.

[1]  Reza Langari,et al.  A defuzzification strategy for a fuzzy logic controller employing prohibitive information in command formulation , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[2]  Karl Nickel,et al.  Interval Mathematics 1985 , 1986, Lecture Notes in Computer Science.

[3]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[4]  V. D. Mazin,et al.  General form of measurement transformations which admit the computational methods of metrological analysis of measuring-testing and measuring-computing systems , 1987 .

[5]  Ebrahim Mamdani,et al.  Applications of fuzzy algorithms for control of a simple dynamic plant , 1974 .

[6]  Eldon Hansen,et al.  Topics in Interval Analysis , 1969 .

[7]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[8]  Chuen-Chien Lee,et al.  Fuzzy logic in control systems: fuzzy logic controller. I , 1990, IEEE Trans. Syst. Man Cybern..

[9]  L. Zadeh,et al.  Towards a theory of fuzzy systems , 1996 .

[10]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[11]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[12]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[13]  A. A. Gaganov,et al.  Computation complexity of the range of a polynomial in several variables , 1985 .

[14]  Andrew Whinston,et al.  Fuzzy Sets and Social Choice , 1973 .

[15]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[16]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[17]  H. R. Berenji,et al.  Fuzzy Logic Controllers , 1992 .

[18]  Lotfi A. Zadeh,et al.  On Fuzzy Mapping and Control , 1996, IEEE Trans. Syst. Man Cybern..

[19]  菅野 道夫,et al.  Industrial applications of fuzzy control , 1985 .

[20]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[21]  J. Blin Fuzzy Relations in Group Decision Theory , 1974 .

[22]  Jf Baldwin,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[24]  Robert N. Lea Automated space vehicle control for rendezvous proximity operations , 1988 .