Three-Dimensional Surface Evolution and Mesh Deformation for Aircraft Icing Applications

This paper presents a mesh generation strategy that facilitates the numerical simulation of ice accretion on realistic aircraft configurations by automating the deformation of surface and volume meshes in response to the evolving ice shape. The discrete surface evolution algorithm is based on a face-offsetting strategy that uses an eigenvalue decomposition to determine 1) the nodal offset direction and 2) a null space in which the quality of the surface mesh is improved via point redistribution. A fast algebraic technique is then used to propagate the computed surface deformations into the surrounding volume mesh. Due to inherent limitations in the icing model employed here, there is no intent to present a tool to predict three-dimensional ice accretions but, instead, to demonstrate a meshing strategy for surface evolution and mesh deformation that is appropriate for aircraft icing applications. In this context, sample results are presented for a complex glaze-ice accretion on a rectangular-planform wing ...

[1]  Steve L. Karman Adaptive Optimization-Based Smoothing for Tetrahedral Meshes , 2015 .

[2]  Eric Blades,et al.  A fast mesh deformation method using explicit interpolation , 2012, J. Comput. Phys..

[3]  M. Rudman INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 24, 671–691 (1997) VOLUME-TRACKING METHODS FOR INTERFACIAL FLOW CALCULATIONS , 2022 .

[4]  Bharat K. Soni,et al.  ICEG2D: A Software Package for Ice Accretion Prediction , 2003 .

[5]  S. Jakirlic,et al.  Comparative assessment of Volume-of-Fluid and Level-Set methods by relevance to dendritic ice growth in supercooled water , 2013 .

[6]  W. Habashi,et al.  Development of a Shallow-Water Icing Model in FENSAP-ICE , 2000 .

[7]  Andy P. Broeren,et al.  Iced-airfoil aerodynamics , 2005 .

[8]  C. Farhat,et al.  Torsional springs for two-dimensional dynamic unstructured fluid meshes , 1998 .

[9]  E. Lozowski,et al.  Progress towards a 3D Numerical Simulation of Ice Accretion on a Swept Wing using the Morphogenetic Approach , 2015 .

[10]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[11]  Dimos Poulikakos,et al.  Are superhydrophobic surfaces best for icephobicity? , 2011, Langmuir : the ACS journal of surfaces and colloids.

[12]  Mario Vargas,et al.  Ice Accretions on a Swept GLC-305 Airfoil , 2002 .

[13]  J.P.F. Charpin,et al.  Multistep Results in ICECREMO2 , 2009 .

[14]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[15]  D. Juric,et al.  A Front-Tracking Method for Dendritic Solidification , 1996 .

[16]  Colin S Bidwell Ice Particle Transport Analysis With Phase Change for the E(sup 3) Turbofan Engine Using LEWICE3D Version 3.2 , 2012 .

[17]  William B. Wright A Summary of Validation Results for LEWICE 2.0 , 1999 .

[18]  Xiangmin Jiao,et al.  Face offsetting: A unified approach for explicit moving interfaces , 2007, J. Comput. Phys..

[19]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[20]  Brian T. Helenbrook,et al.  Mesh deformation using the biharmonic operator , 2003 .

[21]  Jeroen A. S. Witteveen,et al.  Explicit Mesh Deformation Using Inverse Distance Weighting Interpolation , 2009 .

[22]  William Wright,et al.  Validation Results for Lewice 3.0 , 2013 .

[23]  Lingling Wu,et al.  A simple package for front tracking , 2006, J. Comput. Phys..

[24]  Xiaoling Tong,et al.  Robust Surface Evolution and Mesh Deformation for Three Dimensional Aircraft Icing Applications on a Swept GLC-305 Airfoil , 2014 .

[25]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[26]  Marco Fossati,et al.  A 3D mesh deformation technique for irregular in‐flight ice accretion , 2015 .

[27]  Xiaoling Tong,et al.  Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications , 2013 .

[28]  H. Bijl,et al.  Mesh deformation based on radial basis function interpolation , 2007 .

[29]  Stephane Catris,et al.  ECLIPPS: 1. Three-Dimensional CFD Prediction of the Ice Accretion , 2009 .

[30]  Tayfun E. Tezduyar,et al.  Automatic mesh update with the solid-extension mesh moving technique , 2004 .

[31]  Marco Fossati,et al.  An ALE mesh movement scheme for long‐term in‐flight ice accretion , 2012 .

[32]  Charbel Farhat,et al.  A three-dimensional torsional spring analogy method for unstructured dynamic meshes , 2002 .

[33]  Xiaolin Li,et al.  Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions , 1999, SIAM J. Sci. Comput..

[34]  Christian B. Allen,et al.  Efficient mesh motion using radial basis functions with data reduction algorithms , 2008, J. Comput. Phys..

[35]  Ion Paraschivoiu,et al.  Prediction of ice accretion on supercritical and multi-element airfoils , 1995 .

[36]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[37]  Rainald Löhner,et al.  Improved ALE mesh velocities for moving bodies , 1996 .

[38]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[39]  B. L. Messinger Equilibrium Temperature of an Unheated Icing Surface as a Function of Air Speed , 1953 .

[40]  Edward A. Luke,et al.  Numerical simulations of mixtures of fluids using upwind algorithms , 2007 .

[41]  Edward P. Lozowski,et al.  Novel Two-Dimensional Modeling Approach for Aircraft Icing , 2004 .

[42]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[43]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[44]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .