Superconvergence of the h-p version of the finite element method in one dimension
暂无分享,去创建一个
[1] C. Schwab. P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .
[2] I. Babuska,et al. The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .
[3] I. Babuska,et al. Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .
[4] Sigal Gottlieb,et al. Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.
[5] Zhimin Zhang. Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..
[6] NEW ERROR EXPANSION FOR ONE-DIMENSIONAL FINITE ELEMENTS AND ULTRACONVERGENCE , 2005 .
[7] Benqi Guo. Approximation Theory for the P-Version of the Finite Element Method in Three Dimensions Part II: Convergence of the P Version of the Finite Element Method , 2009, SIAM J. Numer. Anal..
[8] Mary F. Wheeler,et al. Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .
[9] Todd F. Dupont,et al. A Unified Theory of Superconvergence for Galerkin Methods for Two-Point Boundary Problems , 1976 .
[10] I. Babuska,et al. The finite element method and its reliability , 2001 .
[11] Ian H. Sloan,et al. Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .
[12] Rolf Stenberg,et al. Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .
[13] Zhimin Zhang,et al. Superconvergence of a Chebyshev Spectral Collocation Method , 2008, J. Sci. Comput..
[14] Benqi Guo. Approximation Theory for the p-Version of the Finite Element Method in Three Dimensions. Part 1: Approximabilities of Singular Functions in the Framework of the Jacobi-Weighted Besov and Sobolev Spaces , 2006, SIAM J. Numer. Anal..
[15] J. Z. Zhu,et al. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .
[16] J. Jr. Douglas,et al. Superconvergence of mixed finite element methods on rectangular domains , 1989 .
[17] Zhimin Zhang,et al. A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..
[18] Richard E. Ewing,et al. Superconvergence of the velocity along the Gauss lines in mixed finite element methods , 1991 .
[19] Qinghua Zhao,et al. SPR technique and finite element correction , 2003, Numerische Mathematik.
[20] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[21] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[22] Weiwei Sun,et al. The Optimal Convergence of the h-p Version of the Finite Element Method with Quasi-Uniform Meshes , 2007, SIAM J. Numer. Anal..
[23] I. Babuska,et al. Finite Element Analysis , 2021 .
[24] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods , 1995 .
[25] Ivo Babuska,et al. The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..
[26] Ben-yu Guo,et al. Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.
[27] I. Babuska,et al. Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .
[28] Ivo Babuška,et al. DIRECT AND INVERSE APPROXIMATION THEOREMS FOR THE p-VERSION OF THE FINITE ELEMENT METHOD IN THE FRAMEWORK OF WEIGHTED BESOV SPACES PART II: OPTIMAL RATE OF CONVERGENCE OF THE p-VERSION FINITE ELEMENT SOLUTIONS , 2002 .
[29] Jerald L Schnoor,et al. What the h? , 2008, Environmental science & technology.
[30] Zhimin Zhang. Ultraconvergence of the patch recovery technique , 1996, Math. Comput..
[31] J. J. Douglas,et al. Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .
[32] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[33] Zhimin Zhang,et al. Superconvergence of spectral collocation and p-version methods in one dimensional problems , 2005, Math. Comput..
[34] Ivo Babuska,et al. Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..