Superconvergence of the h-p version of the finite element method in one dimension

In this paper, we investigate the superconvergence properties of the h-p version of the finite element method (FEM) for two-point boundary value problems. A postprocessing technique for the h-p finite element approximation is analyzed. The analysis shows that the postprocess improves the order of convergence. Furthermore, we obtain asymptotically exact a posteriori error estimators based on the postprocessing results. Numerical examples are included to illustrate the theoretical analysis.

[1]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[2]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[3]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[4]  Sigal Gottlieb,et al.  Spectral Methods , 2019, Numerical Methods for Diffusion Phenomena in Building Physics.

[5]  Zhimin Zhang Ultraconvergence of the patch recovery technique II , 2000, Math. Comput..

[6]  NEW ERROR EXPANSION FOR ONE-DIMENSIONAL FINITE ELEMENTS AND ULTRACONVERGENCE , 2005 .

[7]  Benqi Guo Approximation Theory for the P-Version of the Finite Element Method in Three Dimensions Part II: Convergence of the P Version of the Finite Element Method , 2009, SIAM J. Numer. Anal..

[8]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[9]  Todd F. Dupont,et al.  A Unified Theory of Superconvergence for Galerkin Methods for Two-Point Boundary Problems , 1976 .

[10]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[11]  Ian H. Sloan,et al.  Superconvergence in finite element methods and meshes that are locally symmetric with respect to a point , 1996 .

[12]  Rolf Stenberg,et al.  Finite element methods: superconvergence, post-processing, and a posteriori estimates , 1998 .

[13]  Zhimin Zhang,et al.  Superconvergence of a Chebyshev Spectral Collocation Method , 2008, J. Sci. Comput..

[14]  Benqi Guo Approximation Theory for the p-Version of the Finite Element Method in Three Dimensions. Part 1: Approximabilities of Singular Functions in the Framework of the Jacobi-Weighted Besov and Sobolev Spaces , 2006, SIAM J. Numer. Anal..

[15]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[16]  J. Jr. Douglas,et al.  Superconvergence of mixed finite element methods on rectangular domains , 1989 .

[17]  Zhimin Zhang,et al.  A New Finite Element Gradient Recovery Method: Superconvergence Property , 2005, SIAM J. Sci. Comput..

[18]  Richard E. Ewing,et al.  Superconvergence of the velocity along the Gauss lines in mixed finite element methods , 1991 .

[19]  Qinghua Zhao,et al.  SPR technique and finite element correction , 2003, Numerische Mathematik.

[20]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[21]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[22]  Weiwei Sun,et al.  The Optimal Convergence of the h-p Version of the Finite Element Method with Quasi-Uniform Meshes , 2007, SIAM J. Numer. Anal..

[23]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[24]  L. Wahlbin Superconvergence in Galerkin Finite Element Methods , 1995 .

[25]  Ivo Babuska,et al.  The p and h-p Versions of the Finite Element Method, Basic Principles and Properties , 1994, SIAM Rev..

[26]  Ben-yu Guo,et al.  Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces , 2004, J. Approx. Theory.

[27]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[28]  Ivo Babuška,et al.  DIRECT AND INVERSE APPROXIMATION THEOREMS FOR THE p-VERSION OF THE FINITE ELEMENT METHOD IN THE FRAMEWORK OF WEIGHTED BESOV SPACES PART II: OPTIMAL RATE OF CONVERGENCE OF THE p-VERSION FINITE ELEMENT SOLUTIONS , 2002 .

[29]  Jerald L Schnoor,et al.  What the h? , 2008, Environmental science & technology.

[30]  Zhimin Zhang Ultraconvergence of the patch recovery technique , 1996, Math. Comput..

[31]  J. J. Douglas,et al.  Galerkin approximations for the two point boundary problem using continuous, piecewise polynomial spaces , 1974 .

[32]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[33]  Zhimin Zhang,et al.  Superconvergence of spectral collocation and p-version methods in one dimensional problems , 2005, Math. Comput..

[34]  Ivo Babuska,et al.  Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..