Tighter McCormick relaxations through subgradient propagation

Tight convex and concave relaxations are of high importance in deterministic global optimization. We present a method to tighten relaxations obtained by the McCormick technique. We use the McCormick subgradient propagation (Mitsos et al. in SIAM J Optim 20(2):573–601, 2009) to construct simple affine under- and overestimators of each factor of the original factorable function. Then, we minimize and maximize these affine relaxations in order to obtain possibly improved range bounds for every factor resulting in possibly tighter final McCormick relaxations. We discuss the method and its limitations, in particular the lack of guarantee for improvement. Subsequently, we provide numerical results for benchmark cases found in the MINLPLib2 library and case studies presented in previous works, where the McCormick technique appears to be advantageous, and discuss computational efficiency. We see that the presented algorithm provides a significant improvement in tightness and decrease in computational time, especially in the case studies using the reduced space formulation presented in (Bongartz and Mitsos in J Glob Optim 69:761–796, 2017).

[1]  Jorge Stolfi,et al.  Affine Arithmetic: Concepts and Applications , 2004, Numerical Algorithms.

[2]  Arnold Neumaier,et al.  Benchmarking Global Optimization and Constraint Satisfaction Codes , 2002, COCOS.

[3]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[4]  Pierre Hansen,et al.  An analytical approach to global optimization , 1991, Math. Program..

[5]  Paul I. Barton,et al.  The cluster problem revisited , 2013, Journal of Global Optimization.

[6]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[7]  C. Bendtsen FADBAD, a flexible C++ package for automatic differentiation - using the forward and backward method , 1996 .

[8]  Dimitri P. Bertsekas,et al.  Convex Optimization Algorithms , 2015 .

[9]  Alexander Mitsos,et al.  Deterministic global optimization of process flowsheets in a reduced space using McCormick relaxations , 2017, Journal of Global Optimization.

[10]  Alexander Mitsos,et al.  Deterministic global flowsheet optimization: Between equation‐oriented and sequential‐modular methods , 2019, AIChE Journal.

[11]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[12]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[13]  Alexandre Goldsztejn,et al.  A branch and bound algorithm for quantified quadratic programming , 2017, J. Glob. Optim..

[14]  Alexander Mitsos,et al.  On tightness and anchoring of McCormick and other relaxations , 2019, J. Glob. Optim..

[15]  A. Mitsos,et al.  MAiNGO – McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization , 2018 .

[16]  Alexander Mitsos,et al.  Convergence rate of McCormick relaxations , 2012, J. Glob. Optim..

[17]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[18]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[19]  Garth P. McCormick,et al.  Calculation of bounds on variables satisfying nonlinear inequality constraints , 1993, J. Glob. Optim..

[20]  Paul I. Barton,et al.  The cluster problem in constrained global optimization , 2017, Journal of Global Optimization.

[21]  A. Banerjee Convex Analysis and Optimization , 2006 .

[22]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[23]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[24]  H. Cornelius,et al.  Computing the range of values of real functions with accuracy higher than second order , 1984, Computing.

[25]  Sheldon H. Jacobson,et al.  Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning , 2016, Discret. Optim..

[26]  Alexander Mitsos,et al.  Convergence Order of McCormick Relaxations of LMTD function in Heat Exchanger Networks , 2016 .

[27]  G. McCormick Nonlinear Programming: Theory, Algorithms and Applications , 1983 .

[28]  Benoît Chachuat,et al.  Set-Theoretic Approaches in Analysis, Estimation and Control of Nonlinear Systems , 2015 .

[29]  Kaisheng Du,et al.  The Cluster Problem in Global Optimization: the Univariate Case , 1993 .

[30]  Nikolaos V. Sahinidis,et al.  Domain reduction techniques for global NLP and MINLP optimization , 2017, Constraints.

[31]  J. Stolfi,et al.  Aane Arithmetic and Its Applications to Computer Graphics , 1990 .

[32]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[33]  Nikolaos V. Sahinidis,et al.  A Finite Algorithm for Global Minimization of Separable Concave Programs , 1998, J. Glob. Optim..

[34]  Paul I. Barton,et al.  Convergence-order analysis of branch-and-bound algorithms for constrained problems , 2017, J. Glob. Optim..

[35]  Matthew D. Stuber,et al.  Generalized McCormick relaxations , 2011, J. Glob. Optim..

[36]  Jon G. Rokne,et al.  Computer Methods for the Range of Functions , 1984 .

[37]  Artur M. Schweidtmann,et al.  Deterministic Global Optimization with Artificial Neural Networks Embedded , 2018, Journal of Optimization Theory and Applications.

[38]  Nikolaos V. Sahinidis,et al.  Bounds tightening based on optimality conditions for nonconvex box-constrained optimization , 2017, J. Glob. Optim..

[39]  Paul I. Barton,et al.  Reverse propagation of McCormick relaxations , 2015, Journal of Global Optimization.

[40]  Pierre Hansen,et al.  A reliable affine relaxation method for global optimization , 2010, 4OR.

[41]  R. Baker Kearfott,et al.  The cluster problem in multivariate global optimization , 1994, J. Glob. Optim..

[42]  A. M. Sahlodin,et al.  Convex/concave relaxations of parametric ODEs using Taylor models , 2011, Comput. Chem. Eng..

[43]  Achim Wechsung,et al.  Global optimization in reduced space , 2014 .

[44]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[45]  Gautam Mitra,et al.  Analysis of mathematical programming problems prior to applying the simplex algorithm , 1975, Math. Program..

[46]  Timo Berthold,et al.  Three enhancements for optimization-based bound tightening , 2017, J. Glob. Optim..

[47]  Kamil A. Khan Subtangent-based approaches for dynamic set propagation , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[48]  Fabio Schoen,et al.  Global Optimization: Theory, Algorithms, and Applications , 2013 .

[49]  Nicholas I. M. Gould,et al.  A Note on Performance Profiles for Benchmarking Software , 2016, ACM Trans. Math. Softw..

[50]  Benoît Chachuat,et al.  Convergence analysis of Taylor models and McCormick-Taylor models , 2013, J. Glob. Optim..

[51]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[52]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[53]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[54]  Hermann Schichl,et al.  Interval Analysis on Directed Acyclic Graphs for Global Optimization , 2005, J. Glob. Optim..

[55]  Alexander Mitsos,et al.  Erratum to: Multivariate McCormick relaxations , 2017, J. Glob. Optim..

[56]  Alexander Mitsos,et al.  Multivariate McCormick relaxations , 2014, J. Glob. Optim..

[57]  Linus Schrage,et al.  The global solver in the LINDO API , 2009, Optim. Methods Softw..

[58]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .