Finite generation conjectures for cohomology over finite fields

We construct an intermediate cohmology between motivic cohomology and Weil-etale cohomology. Using this, the Bass conjecture on finite generation of motivic cohomology, and the Beilinson-Tate on the finite generation of Weil-etale cohomology are related.

[1]  S. Saito,et al.  Cohomological Hasse principle and motivic cohomology for arithmetic schemes , 2010, Publications mathématiques de l'IHÉS.

[2]  Alena Pirutka Sur le groupe de Chow de codimension deux des vari\'et\'es sur les corps finis , 2010, 1004.1897.

[3]  U. Jannsen Hasse principles for higher-dimensional fields , 2009, 0910.2803.

[4]  Thomas H. Geisser Arithmetic homology and an integral version of Kato's conjecture , 2007, 0704.1192.

[5]  Thomas H. Geisser Duality via cycle complexes , 2006, math/0608456.

[6]  Thomas H. Geisser Weil-étale cohomology over finite fields , 2004, math/0404425.

[7]  Thomas H. Geisser Arithmetic cohomology over finite fields and special values of ζ-functions , 2004 .

[8]  S. Saito,et al.  Kato homology of arithmetic schemes and higher class field theory over local fields. , 2003 .

[9]  Vladimir Voevodsky,et al.  Motivic cohomology groups are isomorphic to higher chow groups in any characteristic , 2002 .

[10]  Thomas H. Geisser,et al.  The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , 2001 .

[11]  Vladimir Voevodsky,et al.  Cycles, Transfers And Motivic Homology Theories , 2000 .

[12]  Alex Rosenberg,et al.  -Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras , 1994 .

[13]  Uwe Jannsen Continuous étale cohomology , 1988 .

[14]  Spencer Bloch,et al.  Algebraic cycles and higher K-theory , 1986 .

[15]  Kazuya Kato A Hasse principle for two dimensional global fields. , 1986 .

[16]  H. Bass Some problems in "classical" algebraic K-theory , 1973 .