Finite generation conjectures for cohomology over finite fields
暂无分享,去创建一个
[1] S. Saito,et al. Cohomological Hasse principle and motivic cohomology for arithmetic schemes , 2010, Publications mathématiques de l'IHÉS.
[2] Alena Pirutka. Sur le groupe de Chow de codimension deux des vari\'et\'es sur les corps finis , 2010, 1004.1897.
[3] U. Jannsen. Hasse principles for higher-dimensional fields , 2009, 0910.2803.
[4] Thomas H. Geisser. Arithmetic homology and an integral version of Kato's conjecture , 2007, 0704.1192.
[5] Thomas H. Geisser. Duality via cycle complexes , 2006, math/0608456.
[6] Thomas H. Geisser. Weil-étale cohomology over finite fields , 2004, math/0404425.
[7] Thomas H. Geisser. Arithmetic cohomology over finite fields and special values of ζ-functions , 2004 .
[8] S. Saito,et al. Kato homology of arithmetic schemes and higher class field theory over local fields. , 2003 .
[9] Vladimir Voevodsky,et al. Motivic cohomology groups are isomorphic to higher chow groups in any characteristic , 2002 .
[10] Thomas H. Geisser,et al. The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky , 2001 .
[11] Vladimir Voevodsky,et al. Cycles, Transfers And Motivic Homology Theories , 2000 .
[12] Alex Rosenberg,et al. -Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras , 1994 .
[13] Uwe Jannsen. Continuous étale cohomology , 1988 .
[14] Spencer Bloch,et al. Algebraic cycles and higher K-theory , 1986 .
[15] Kazuya Kato. A Hasse principle for two dimensional global fields. , 1986 .
[16] H. Bass. Some problems in "classical" algebraic K-theory , 1973 .