Impact of irrigated agriculture on groundwater resources in a temperate humid region.

[1]  J. Garnier,et al.  Determination of the initial 14C activity of the total dissolved carbon: A review of the existing models and a new approach , 1979 .

[2]  Laurent Dever,et al.  Approches chimiques et isotopiques des interactions fluides-matrice en zone non saturée carbonatée , 1985 .

[3]  Les sables et argiles du bourbonnais (massif central, france) : une formation fluvio-lacustre d'age pliocene superieur, etude mineralogique, sedimentologique et stratigraphique , 1989 .

[4]  J. Böhlke,et al.  Combined Use of Groundwater Dating, Chemical, and Isotopic Analyses to Resolve the History and Fate of Nitrate Contamination in Two Agricultural Watersheds, Atlantic Coastal Plain, Maryland , 1995 .

[5]  F. Oldfield,et al.  Global network for isotopes in precipitation , 1996 .

[6]  I. Clark,et al.  Environmental Isotopes in Hydrogeology , 1997 .

[7]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[8]  S. Polasky,et al.  Agricultural sustainability and intensive production practices , 2002, Nature.

[9]  D. Widory,et al.  Strontium isotope geochemistry of alluvial groundwater: a tracer for groundwater resources characterisation , 2004 .

[10]  M R Llamas,et al.  Intensive groundwater use: a silent revolution that cannot be ignored. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[11]  M. Sophocleous Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA , 2005 .

[12]  L. N. Plummer,et al.  Application of environmental tracers to mixing, evolution, and nitrate contamination of ground water in Jeju Island, Korea , 2006 .

[13]  J. Sickman,et al.  Effects of Urbanization on Organic Carbon Loads in the Sacramento River, California , 2007 .

[14]  B. Zinn,et al.  Potential effects of regional pumpage on groundwater age distribution , 2007 .

[15]  C. Kendall,et al.  Carbon isotope fractionation of dissolved inorganic carbon (DIC) due to outgassing of carbon dioxide from a headwater stream , 2008 .

[16]  Yangxiao Zhou,et al.  A critical review of groundwater budget myth, safe yield and sustainability , 2009 .

[17]  H. Celle-Jeanton,et al.  Twenty years of groundwater evolution in the Triassic sandstone aquifer of Lorraine: Impacts on baseline water quality , 2009 .

[18]  M. Bierkens,et al.  Global depletion of groundwater resources , 2010 .

[19]  P. Döll,et al.  Groundwater use for irrigation - a global inventory , 2010 .

[20]  H. Celle-Jeanton,et al.  Carbon isotopes to constrain the origin and circulation pattern of groundwater in the north-western part of the Bohemian Cretaceous Basin (Czech Republic) , 2010 .

[21]  S. Tweed,et al.  Arid zone groundwater recharge and salinisation processes; an example from the Lake Eyre Basin, Australia , 2011 .

[22]  S. Carpenter,et al.  Solutions for a cultivated planet , 2011, Nature.

[23]  I. Cartwright,et al.  Constraining groundwater recharge and the rate of geochemical processes using tritium and major ion geochemistry: Ovens catchment, southeast Australia , 2012 .

[24]  T. Gleeson,et al.  Regional strategies for the accelerating global problem of groundwater depletion , 2012 .

[25]  R. Reedy,et al.  Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley , 2012, Proceedings of the National Academy of Sciences.

[26]  Y. Travi,et al.  Assessing groundwater residence time in a highly anthropized unconfined aquifer using bomb peak 14C and reconstructed irrigation water 3H of irrigation water , 2013 .

[27]  Jinsheng Wang,et al.  Reconstruction and Optimization of Tritium Time Series in Precipitation of Beijing, China , 2013, Radiocarbon.

[28]  Y. Travi,et al.  Assessing Groundwater Residence Time in a Highly Anthropized Unconfined Aquifer Using Bomb Peak 14C and Reconstructed Irrigation Water 3H , 2013, Radiocarbon.

[29]  N. Assayag,et al.  Carbon sources and water-rock interactions in the Allier River, France , 2013 .

[30]  J. Gun,et al.  Groundwater around the World: A Geographic Synopsis , 2013 .

[31]  B. Scanlon,et al.  Ground water and climate change , 2013 .

[32]  S. Welch,et al.  Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110 , 2013, Proceedings of the National Academy of Sciences.

[33]  M. Taniguchi,et al.  Groundwater as a Key for Adaptation to Changing Climate and Society , 2014 .

[34]  T. Harter,et al.  Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. , 2014, The Science of the total environment.

[35]  J. Böhlke,et al.  TracerLPM (Version 1): An Excel Workbook for Interpreting Groundwater Age Distributions from Environmental Tracer Data , 2014 .

[36]  A. Visser,et al.  A Bayesian modeling approach for estimation of a shape-free groundwater age distribution using multiple tracers , 2014 .

[37]  J. Mas-Pla,et al.  Identifying the effects of human pressure on groundwater quality to support water management strategies in coastal regions: a multi-tracer and statistical approach (Bou-Areg region, Morocco). , 2014, The Science of the total environment.

[38]  Changsheng Li,et al.  Quantifying the link between crop production and mined groundwater irrigation in China. , 2015, The Science of the total environment.

[39]  Yi Zheng,et al.  Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture , 2015, Environ. Model. Softw..

[40]  N. K. Sonmez,et al.  Seasonal changes of spatial variation of some groundwater quality variables in a large irrigated coastal Mediterranean region of Turkey. , 2016, The Science of the total environment.

[41]  S. Tweed,et al.  Leaky savannas: the significance of lateral carbon fluxes in the seasonal tropics , 2016 .