THE 2011 OUTBURST OF RECURRENT NOVA T PYX: RADIO OBSERVATIONS REVEAL THE EJECTA MASS AND HINT AT COMPLEX MASS LOSS
暂无分享,去创建一个
Koji Mukai | Michael P. Rupen | Laura Chomiuk | Amy J. Mioduszewski | L. Chomiuk | M. Rupen | J. Sokoloski | K. Mukai | A. Mioduszewski | T. Nelson | N. Roy | J. Weston | M. Krauss | J. L. Sokoloski | Thomas Nelson | Nirupam Roy | Miriam I. Krauss | Jennifer Weston
[1] Early decline spectra of nova SMC 2001 and nova LMC 2002 , 2005, astro-ph/0504153.
[2] L. Chomiuk,et al. THE RADIO LIGHT CURVE OF THE GAMMA-RAY NOVA IN V407 CYG: THERMAL EMISSION FROM THE IONIZED SYMBIOTIC ENVELOPE, DEVOURED FROM WITHIN BY THE NOVA BLAST , 2012, 1210.6029.
[3] G. Shaviv,et al. The fate of a WD accreting H-rich material at high accretion rates , 2013 .
[4] A. Taylor,et al. Radio images of the expanding ejecta of nova QU Vulpeculae 1984 , 1988, Nature.
[5] M. F. Bode,et al. Giant Metrewave Radio Telescope Observations of the 2006 Outburst of the Nova RS Ophiuchi: First Detection of Emission at Radio Frequencies <1.4 GHz , 2007, 0708.1216.
[6] M. Bode,et al. Radio observations of the classical nova Cygni 92 eighty days after outburst , 1993, Nature.
[7] A. Ederoclite,et al. Early spectral evolution of Nova Sagittarii 2004 (V5114 Sagittarii) , 2006 .
[8] E. Schatzman. Remarques sur le phénomène de novae , 1949 .
[9] M. Bode,et al. Nova Cygni 1992 (V1974 Cygni): MERLIN observations from 1992 to 1994 , 1996 .
[10] Daniel Durand,et al. Astronomical Data Analysis Software and Systems XI , 2009 .
[11] J. Bieging,et al. Mass loss from very luminous OB stars and the Cygnus superbubble , 1981 .
[12] R. Hjellming,et al. Radio emission from nova shells , 1979 .
[13] N. Duric,et al. Radio observations and analysis of Nova V1500 Cygni , 1980 .
[14] I. Hachisu,et al. EFFECTS OF A COMPANION STAR ON SLOW NOVA OUTBURSTS—TRANSITION FROM STATIC TO WIND EVOLUTIONS , 2011, 1109.1499.
[15] T. Augusteijn,et al. The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst. II.The optically thin phase and the structure of the ejecta in recurrent novae , 2012, 1211.3453.
[16] H. Bond,et al. The Stony Brook/SMARTS Atlas of (mostly) Southern Novae , 2012, 1209.1583.
[17] J. Thorstensen,et al. Two Galactic Supersoft X‐Ray Binaries: V Sagittae and T Pyxidis , 1998 .
[18] R. Williams. Spectroscopic analysis of the extended shells around the novae CP Puppis and T. Pyxidis , 1982 .
[19] J. MacDonald. Are cataclysmic variables the progenitors of type I supernovae , 1984 .
[20] R. Gehrz,et al. Nucleosynthesis in Classical Novae and Its Contribution to the Interstellar Medium , 1998 .
[21] B. Tofflemire,et al. X-RAY GRATING OBSERVATIONS OF RECURRENT NOVA T PYXIDIS DURING THE 2011 OUTBURST , 2012, 1311.2893.
[22] W. G. Dillon,et al. THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY , 2011, 1109.0065.
[23] Edward L. Fitzpatrick,et al. Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.
[24] A. V. Tutukov,et al. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .
[25] M. Rupen,et al. An Expanding Shell and Synchrotron Jet in RS Ophiuchi , 2007, 0711.1142.
[26] M. Shara,et al. THE NOVA SHELL AND EVOLUTION OF THE RECURRENT NOVA T PYXIDIS , 2009, 0906.0933.
[27] R. Davis,et al. V723 Cas (Nova Cassiopeiae 1995): MERLIN observations from 1996 to 2001 , 2005, 0708.1158.
[28] A. Crotts,et al. THE RECURRENT NOVA T Pyx: DISTANCE AND REMNANT GEOMETRY FROM LIGHT ECHOES , 2013, 1305.5245.
[29] J. Truran,et al. The common envelope phase in the outbursts of classical novae , 1990 .
[30] J. Truran,et al. CNO abundances and hydrodynamic models of the nova outburst. , 1972 .
[31] Roberto Gilmozzi,et al. HST Imagery of the Non-Expanding, Clumped "Shell" of the Recurrent Nova T Pyxidis , 1997 .
[32] O. Yaron,et al. An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005 .
[33] T. Augusteijn,et al. The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst - I. The optically thick phase and the origin of moving lines in novae , 2011, 1108.3505.
[34] D. Steeghs,et al. The orbital period and system parameters of the recurrent nova T Pyx , 2010, 1005.5166.
[35] A. Walker,et al. The photometric period of the recurrent Nova T Pyxidis , 1992 .
[36] G. Ferland,et al. Hot gas and the origin of the nebular continuum in novae , 1994 .
[37] B. Schaefer. COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.
[38] G. Zins,et al. The 2011 outburst of the recurrent nova T Pyxidis. Evidence for a face-on bipolar ejection , 2011 .
[39] R. Gilmozzi,et al. The secrets of T Pyxidis - II. A recurrent nova that will not become a SN Ia , 2008, 0904.1146.
[40] Robert E. Williams. Extinction, ejecta masses, and radial velocities of novae , 1994 .
[41] K. Nomoto,et al. Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.
[42] K. R. Lang,et al. Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist , 1974 .
[43] J. Brooks,et al. HYDROGEN BURNING ON ACCRETING WHITE DWARFS: STABILITY, RECURRENT NOVAE, AND THE POST-NOVA SUPERSOFT PHASE , 2013, 1309.3375.
[44] M. Livio,et al. GK Per (Nova Persei 1901): HUBBLE SPACE TELESCOPE IMAGERY AND SPECTROSCOPY OF THE EJECTA, AND FIRST SPECTRUM OF THE JET-LIKE FEATURE , 2012, 1204.3078.
[45] Isabelle Baraffe,et al. THE EVOLUTION OF CATACLYSMIC VARIABLES AS REVEALED BY THEIR DONOR STARS , 2011, 1102.2440.