THE 2011 OUTBURST OF RECURRENT NOVA T PYX: RADIO OBSERVATIONS REVEAL THE EJECTA MASS AND HINT AT COMPLEX MASS LOSS

Despite being the prototype of its class, T Pyx is arguably the most unusual and poorly understood recurrent nova. Here, we use radio observations from the Karl G. Jansky Very Large Array to trace the evolution of the ejecta over the course of the 2011 outburst of T Pyx. The radio emission is broadly consistent with thermal emission from the nova ejecta. However, the radio flux began rising surprisingly late in the outburst, indicating that the bulk of the radio-emitting material was either very cold, or expanding very slowly, for the first ∼50 days of the outburst. Considering a plausible range of volume filling factors and geometries for the ejecta, we find that the high peak flux densities of the radio emission require a massive ejection of (1-30) × 10{sup –5} M {sub ☉}. This ejecta mass is much higher than the values normally associated with recurrent novae, and is more consistent with a nova on a white dwarf well below the Chandrasekhar limit.

[1]  Early decline spectra of nova SMC 2001 and nova LMC 2002 , 2005, astro-ph/0504153.

[2]  L. Chomiuk,et al.  THE RADIO LIGHT CURVE OF THE GAMMA-RAY NOVA IN V407 CYG: THERMAL EMISSION FROM THE IONIZED SYMBIOTIC ENVELOPE, DEVOURED FROM WITHIN BY THE NOVA BLAST , 2012, 1210.6029.

[3]  G. Shaviv,et al.  The fate of a WD accreting H-rich material at high accretion rates , 2013 .

[4]  A. Taylor,et al.  Radio images of the expanding ejecta of nova QU Vulpeculae 1984 , 1988, Nature.

[5]  M. F. Bode,et al.  Giant Metrewave Radio Telescope Observations of the 2006 Outburst of the Nova RS Ophiuchi: First Detection of Emission at Radio Frequencies <1.4 GHz , 2007, 0708.1216.

[6]  M. Bode,et al.  Radio observations of the classical nova Cygni 92 eighty days after outburst , 1993, Nature.

[7]  A. Ederoclite,et al.  Early spectral evolution of Nova Sagittarii 2004 (V5114 Sagittarii) , 2006 .

[8]  E. Schatzman Remarques sur le phénomène de novae , 1949 .

[9]  M. Bode,et al.  Nova Cygni 1992 (V1974 Cygni): MERLIN observations from 1992 to 1994 , 1996 .

[10]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[11]  J. Bieging,et al.  Mass loss from very luminous OB stars and the Cygnus superbubble , 1981 .

[12]  R. Hjellming,et al.  Radio emission from nova shells , 1979 .

[13]  N. Duric,et al.  Radio observations and analysis of Nova V1500 Cygni , 1980 .

[14]  I. Hachisu,et al.  EFFECTS OF A COMPANION STAR ON SLOW NOVA OUTBURSTS—TRANSITION FROM STATIC TO WIND EVOLUTIONS , 2011, 1109.1499.

[15]  T. Augusteijn,et al.  The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst. II.The optically thin phase and the structure of the ejecta in recurrent novae , 2012, 1211.3453.

[16]  H. Bond,et al.  The Stony Brook/SMARTS Atlas of (mostly) Southern Novae , 2012, 1209.1583.

[17]  J. Thorstensen,et al.  Two Galactic Supersoft X‐Ray Binaries: V Sagittae and T Pyxidis , 1998 .

[18]  R. Williams Spectroscopic analysis of the extended shells around the novae CP Puppis and T. Pyxidis , 1982 .

[19]  J. MacDonald Are cataclysmic variables the progenitors of type I supernovae , 1984 .

[20]  R. Gehrz,et al.  Nucleosynthesis in Classical Novae and Its Contribution to the Interstellar Medium , 1998 .

[21]  B. Tofflemire,et al.  X-RAY GRATING OBSERVATIONS OF RECURRENT NOVA T PYXIDIS DURING THE 2011 OUTBURST , 2012, 1311.2893.

[22]  W. G. Dillon,et al.  THE 2011 ERUPTION OF THE RECURRENT NOVA T PYXIDIS: THE DISCOVERY, THE PRE-ERUPTION RISE, THE PRE-ERUPTION ORBITAL PERIOD, AND THE REASON FOR THE LONG DELAY , 2011, 1109.0065.

[23]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[24]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[25]  M. Rupen,et al.  An Expanding Shell and Synchrotron Jet in RS Ophiuchi , 2007, 0711.1142.

[26]  M. Shara,et al.  THE NOVA SHELL AND EVOLUTION OF THE RECURRENT NOVA T PYXIDIS , 2009, 0906.0933.

[27]  R. Davis,et al.  V723 Cas (Nova Cassiopeiae 1995): MERLIN observations from 1996 to 2001 , 2005, 0708.1158.

[28]  A. Crotts,et al.  THE RECURRENT NOVA T Pyx: DISTANCE AND REMNANT GEOMETRY FROM LIGHT ECHOES , 2013, 1305.5245.

[29]  J. Truran,et al.  The common envelope phase in the outbursts of classical novae , 1990 .

[30]  J. Truran,et al.  CNO abundances and hydrodynamic models of the nova outburst. , 1972 .

[31]  Roberto Gilmozzi,et al.  HST Imagery of the Non-Expanding, Clumped "Shell" of the Recurrent Nova T Pyxidis , 1997 .

[32]  O. Yaron,et al.  An Extended Grid of Nova Models. II. The Parameter Space of Nova Outbursts , 2005 .

[33]  T. Augusteijn,et al.  The spectroscopic evolution of the recurrent nova T Pyxidis during its 2011 outburst - I. The optically thick phase and the origin of moving lines in novae , 2011, 1108.3505.

[34]  D. Steeghs,et al.  The orbital period and system parameters of the recurrent nova T Pyx , 2010, 1005.5166.

[35]  A. Walker,et al.  The photometric period of the recurrent Nova T Pyxidis , 1992 .

[36]  G. Ferland,et al.  Hot gas and the origin of the nebular continuum in novae , 1994 .

[37]  B. Schaefer COMPREHENSIVE PHOTOMETRIC HISTORIES OF ALL KNOWN GALACTIC RECURRENT NOVAE , 2009, 0912.4426.

[38]  G. Zins,et al.  The 2011 outburst of the recurrent nova T Pyxidis. Evidence for a face-on bipolar ejection , 2011 .

[39]  R. Gilmozzi,et al.  The secrets of T Pyxidis - II. A recurrent nova that will not become a SN Ia , 2008, 0904.1146.

[40]  Robert E. Williams Extinction, ejecta masses, and radial velocities of novae , 1994 .

[41]  K. Nomoto,et al.  Thermal Stability of White Dwarfs Accreting Hydrogen-rich Matter and Progenitors of Type Ia Supernovae , 2006, astro-ph/0603351.

[42]  K. R. Lang,et al.  Astrophysical Formulae: A Compendium for the Physicist and Astrophysicist , 1974 .

[43]  J. Brooks,et al.  HYDROGEN BURNING ON ACCRETING WHITE DWARFS: STABILITY, RECURRENT NOVAE, AND THE POST-NOVA SUPERSOFT PHASE , 2013, 1309.3375.

[44]  M. Livio,et al.  GK Per (Nova Persei 1901): HUBBLE SPACE TELESCOPE IMAGERY AND SPECTROSCOPY OF THE EJECTA, AND FIRST SPECTRUM OF THE JET-LIKE FEATURE , 2012, 1204.3078.

[45]  Isabelle Baraffe,et al.  THE EVOLUTION OF CATACLYSMIC VARIABLES AS REVEALED BY THEIR DONOR STARS , 2011, 1102.2440.