Variance-Considered Machine에 기반한 Brain-Computer Interface 시스템의 성능 향상

본 논문에서는 선행 연구를 통해 제안하였던 새로운 분류 알고리즘인 Variance Considered Machines (VCM)을 통해 EEG 신호의 분류 에러율을 감소시킴으로 Brain-Computer Interface (BCI)의 성능향상 가능성을 보였다. BCI란 뇌파를 통해 컴퓨터와 같은 시스템을 제어하는 것으로 BCI의 인식률에 영향을 미치는 것에는 많은 요소가 있지만 본 논문에서는 그 중에서도 가장 중요한 분류 알고리즘을 제안된 알고리즘을 통해 인식률을 향상하는 것을 보였다. 이를 위해 피험자가 가상으로 왼쪽 손과 다리를 움직이는 상상을 한 데이터를 기존에 가장 많이 사용되고 있는 분류 알고리즘인 SVM과 제안된 VCM으로 분류하여 인식률을 비교하였다. 기존 연구를 통해 VCM의 우수성을 이론적 결과와 시뮬레이션 결과로 보였다면 본 논문에서는 실제 데이터를 통한 실험을 통해 인식률 향상을 보였다.