Deuterium erosion and retention properties on MoAlB ceramics by ion irradiation

[1]  L. Hultman,et al.  A step-by-step guide to perform x-ray photoelectron spectroscopy , 2022, Journal of Applied Physics.

[2]  You Zhang,et al.  The erosion and retention properties of tungsten trioxide films exposed to low energy deuterium ions: temperature dependence , 2022, Journal of Nuclear Materials.

[3]  M. Balden,et al.  Comparison experiment on the sputtering of EUROFER, RUSFER and CLAM steels by deuterium ions , 2022, Nuclear Materials and Energy.

[4]  E. Kisi,et al.  Radiation damage of MoAlB at elevated temperatures: Investigating MAB phases as potential neutron shielding materials , 2021, Journal of the European Ceramic Society.

[5]  L. Hultman,et al.  The same chemical state of carbon gives rise to two peaks in X-ray photoelectron spectroscopy , 2021, Scientific Reports.

[6]  K. Zhu,et al.  Fluence Dependence of Surface Morphology and Deuterium Retention in W Bulks and Nanocrystalline W Films Exposed to Deuterium Plasma , 2021, Applied Sciences.

[7]  Liang Wang,et al.  Suppression of edge localized modes with real-time boron injection using the tungsten divertor in EAST , 2020, Nuclear Fusion.

[8]  W. Jacob,et al.  Hydrogen atom-ion synergy in surface lattice modification at sub-threshold energy , 2020 .

[9]  Bin Zhang,et al.  Surface modification and deuterium retention of tungsten films under low energy deuterium ion irradiation , 2020 .

[10]  I. Szlufarska,et al.  Defect behavior and radiation tolerance of MAB phases (MoAlB and Fe2AlB2) with comparison to MAX phases , 2020, 2008.05502.

[11]  Yonggang Li,et al.  A review of surface damage/microstructures and their effects on hydrogen/helium retention in tungsten , 2020, Tungsten.

[12]  V. Natu,et al.  X-ray photoelectron spectroscopy of the MAB phases, MoAlB, M2AlB2 (M = Cr, Fe), Cr3AlB4 and their binary monoborides , 2020 .

[13]  L. Hultman,et al.  Compromising science by ignorant instrument calibration - need to revisit half a century of published XPS data. , 2020, Angewandte Chemie.

[14]  L. Hultman,et al.  X-ray photoelectron spectroscopy: Towards reliable binding energy referencing , 2020, Progress in Materials Science.

[15]  G. Lu,et al.  Surface blistering and deuterium retention in tungsten exposed to low-energy deuterium plasma at different temperatures , 2019, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

[16]  M. Balden,et al.  High-flux hydrogen irradiation-induced cracking of tungsten reproduced by low-flux plasma exposure , 2019, Nuclear Fusion.

[17]  Peng Wang,et al.  Erosion and fuel retentions of various reduced-activation ferritic martensitic steel grades exposed to deuterium plasma , 2019, Fusion Engineering and Design.

[18]  George D. W. Smith,et al.  Shielding materials in the compact spherical tokamak , 2019, Philosophical Transactions of the Royal Society A.

[19]  L. Hultman,et al.  Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: Resolving the myth of apparent constant binding energy of the C 1s peak , 2018, Applied Surface Science.

[20]  J. Roth,et al.  Erosion of EUROFER steel by mass-selected deuterium ion bombardment , 2018, Nuclear Materials and Energy.

[21]  W. Jacob,et al.  Erosion and deuterium retention of CLF-1 steel exposed to deuterium plasma , 2017 .

[22]  Wei Zhang,et al.  Differential cross-section of D( 12 C,D) 12 C elastic recoil reaction , 2017 .

[23]  M. Balden,et al.  Effect of the surface temperature on surface morphology, deuterium retention and erosion of EUROFER steel exposed to low-energy, high-flux deuterium plasma , 2017 .

[24]  Reinhard Pippan,et al.  Development of advanced high heat flux and plasma-facing materials , 2017 .

[25]  T. Ouisse,et al.  First‐order Raman scattering in three‐layered Mo‐based ternaries: MoAlB, Mo2Ga2C and Mo2GaC , 2017 .

[26]  L. Hultman,et al.  C 1s Peak of Adventitious Carbon Aligns to the Vacuum Level: Dire Consequences for Material's Bonding Assignment by Photoelectron Spectroscopy , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  O. Ogorodnikova,et al.  Surface modification and deuterium retention in reduced-activation steels under low-energy deuterium plasma exposure. Part II: steels pre-damaged with 20 MeV W ions and high heat flux , 2017 .

[28]  W. Jacob,et al.  Sputtering of iron, chromium and tungsten by energetic deuterium ion bombardment , 2016 .

[29]  William E Lee,et al.  Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB , 2016, Scientific Reports.

[30]  A. E. Costley,et al.  On the fusion triple product and fusion power gain of tokamak pilot plants and reactors , 2016 .

[31]  M. Balden,et al.  Deuterium supersaturation in low-energy plasma-loaded tungsten surfaces , 2016 .

[32]  Jiaxing Li,et al.  XPS investigation of impurities containing boron films affected by energetic deuterium implantation and thermal desorption , 2015 .

[33]  T. Tanabe Review of hydrogen retention in tungsten , 2014 .

[34]  A. A. Haasz,et al.  Deuterium retention in tungsten at fluences of up to 1026 D+/m2 using D+ ion beams , 2010 .

[35]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[36]  A. Sagara,et al.  Ion fluence dependence on chemical behavior of energetic deuterium implanted into oxygen-contained boron film , 2007 .

[37]  J. Roth,et al.  Hydrogen isotope retention in plasma-facing materials: review of recent experimental results , 2007 .

[38]  B. Kolbasov,et al.  Tungsten erosion under simulation of iter divertor operation , 2003 .

[39]  N. Asakura,et al.  Boronization effects using deuterated-decaborane (B10D14) in JT-60U , 2003 .

[40]  R. Causey,et al.  Hydrogen isotope retention and recycling in fusion reactor plasma-facing components , 2002 .

[41]  E. Szilágyi,et al.  Theoretical approximations for depth resolution calculations in IBA methods , 1995 .

[42]  W. Eckstein,et al.  Tridyn — A TRIM simulation code including dynamic composition changes , 1984 .

[43]  F. Maury,et al.  Frenkel pair creation and stage I recovery in W crystals irradiated near threshold , 1978 .