Data completion and stochastic algorithms for PDE inversion problems with many measurements

Inverse problems involving systems of partial differential equations (PDEs) with many measurements or experiments can be very expensive to solve numerically. In a recent paper we examined dimensionality reduction methods, both stochastic and deterministic, to reduce this computational burden, assuming that all experiments share the same set of receivers. In the present article we consider the more general and practically important case where receivers are not shared across experiments. We propose a data completion approach to alleviate this problem. This is done by means of an approximation using an appropriately restricted gradient or Laplacian regularization, extending existing data for each experiment to the union of all receiver locations. Results using the method of simultaneous sources (SS) with the completed data are then compared to those obtained by a more general but slower random subset (RS) method which requires no modifications.

[1]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[2]  A. Fichtner Full Seismic Waveform Modelling and Inversion , 2011 .

[3]  Eldad Haber,et al.  An Effective Method for Parameter Estimation with PDE Constraints with Multiple Right-Hand Sides , 2012, SIAM J. Optim..

[4]  Max Deffenbaugh,et al.  Efficient Seismic Forward Modeling and Acquisition using Simultaneous Random Sources and Sparsity , .

[5]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[6]  Alexander Shapiro,et al.  Stochastic Approximation approach to Stochastic Programming , 2013 .

[7]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[8]  Eldad Haber,et al.  Simultaneous Source for non-uniform data variance and missing data , 2014, ArXiv.

[9]  Denis Ridzal,et al.  An Application of Random Projection to Parameter Estimation in Partial Differential Equations , 2012, SIAM J. Sci. Comput..

[10]  Jorge Nocedal,et al.  On the Use of Stochastic Hessian Information in Optimization Methods for Machine Learning , 2011, SIAM J. Optim..

[11]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[12]  U. Ascher,et al.  Dynamic level set regularization for large distributed parameter estimation problems , 2007 .

[13]  Sivan Toledo,et al.  Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix , 2011, JACM.

[14]  Nariida C. Smith,et al.  Two-Dimensional DC Resistivity Inversion for Dipole-Dipole Data , 1984, IEEE Transactions on Geoscience and Remote Sensing.

[15]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[16]  G. Newman,et al.  Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .

[17]  Uri M. Ascher,et al.  On level set regularization for highly ill-posed distributed parameter estimation problems , 2006, J. Comput. Phys..

[18]  Uri M. Ascher,et al.  Stochastic Algorithms for Inverse Problems Involving PDEs and many Measurements , 2014, SIAM J. Sci. Comput..

[19]  Gunther Uhlmann,et al.  Complex geometrical optics solutions for Lipschitz conductivities , 2003 .

[20]  E. Haber,et al.  The lost honor of ℓ2-based regularization , 2013 .

[21]  P. Maass,et al.  An analysis of electrical impedance tomography with applications to Tikhonov regularization , 2012 .

[22]  M. Vogelius,et al.  Gradient Estimates for Solutions to Divergence Form Elliptic Equations with Discontinuous Coefficients , 2000 .

[23]  E. Haber,et al.  Adaptive finite volume method for distributed non-smooth parameter identification , 2007 .

[24]  Felix J. Herrmann,et al.  Seismic Waveform Inversion by Stochastic Optimization , 2011 .

[25]  Jari P. Kaipio,et al.  Sparsity reconstruction in electrical impedance tomography: An experimental evaluation , 2012, J. Comput. Appl. Math..

[26]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[27]  E. Miller,et al.  A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets , 2000 .

[28]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[29]  U. Ascher,et al.  Adaptive and stochastic algorithms for EIT and DC resistivity problems with piecewise constant solutions and many measurements , 2011 .

[30]  Richard L. Smith,et al.  PREDICTIVE INFERENCE , 2004 .

[31]  F. Herrmann,et al.  Compressive simultaneous full-waveform simulation , 2009 .

[32]  Uri M. Ascher,et al.  Improved Bounds on Sample Size for Implicit Matrix Trace Estimators , 2013, Found. Comput. Math..

[33]  E. Haber,et al.  Inversion of 3D electromagnetic data in frequency and time domain using an inexact all-at-once approach , 2004 .

[34]  Mark W. Schmidt,et al.  Hybrid Deterministic-Stochastic Methods for Data Fitting , 2011, SIAM J. Sci. Comput..

[35]  Dimitris Achlioptas,et al.  Database-friendly random projections , 2001, PODS.

[36]  G. Papanicolaou,et al.  High-contrast impedance tomography , 1996 .