On Central Complete and Incomplete Bell Polynomials I

In this paper, we introduce central complete and incomplete Bell polynomials which can be viewed as generalizations of central Bell polynomials and central factorial numbers of the second kind, and also as ’central’ analogues for complete and incomplete Bell polynomials. Further, some properties and identities for these polynomials are investigated. In particular, we provide explicit formulas for the central complete and incomplete Bell polynomials related to central factorial numbers of the second kind.

[1]  Taekyun Kim,et al.  On λ-Bell polynomials associated with umbral calculus , 2017 .

[2]  Sadek Bouroubi,et al.  New Identities for Bell's Polynomials New Approaches , 2006 .

[3]  Jean-Gabriel Luque,et al.  Word Bell Polynomials , 2016 .

[4]  L. Carlitz SOME REMARKS ON THE BELL NUMBERS , 1980 .

[5]  Djurdje Cvijovic New identities for the partial Bell polynomials , 2011, Appl. Math. Lett..

[6]  Warren P. Johnson The Curious History of Faà di Bruno's Formula , 2002, Am. Math. Mon..

[7]  Taekyun Kim,et al.  Differential equations associated with degenerate Changhee numbers of the second kind , 2018, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[8]  Donal F. Connon Various applications of the (exponential) complete Bell polynomials , 2010 .

[9]  Salvatore Triolo,et al.  Representations of modules over a ∗ -algebra and related seminorms , 2008 .

[10]  Dan Port,et al.  Polynomial maps with applications to combinatorics and probability theory , 1994 .

[11]  K. S. Kölbig The complete Bell polynomials for certain arguments in terms of Stirling numbers of the first kind , 1994 .

[12]  Taekyun Kim,et al.  Some identities of Bell polynomials , 2015 .

[13]  T. Neumann Advanced Combinatorics The Art Of Finite And Infinite Expansions , 2016 .

[14]  T. Kim A note on central factorial numbers , 2018 .

[15]  Miloud Mihoubi Bell polynomials and binomial type sequences , 2008, Discret. Math..

[16]  Taekyun Kim,et al.  A Note on Central Bell Numbers and Polynomials , 2020 .

[17]  Paul L. Butzer,et al.  Central factorial numbers; their main properties and some applications. , 1989 .

[18]  John Riordan,et al.  The divided central differences of zero , 1963 .

[19]  Salvatore Triolo,et al.  Representable states on quasilocal quasi *-algebras , 2011 .