Advances in compressed sensing for magnetic resonance imaging

Magnetic resonance imaging (MRI) is a non-invasive imaging modality, which offers high spatial resolution and excellent soft tissue contrast without employing ionizing radiation. MRI is sensitive to a wide range of contrast mechanisms that allow assessment of both morphology and physiology, making it a modality of choice for many clinical applications. A major limitation of MRI is that data acquisition is relatively slow, which besides being unpleasant for the patient, can also seriously degrade the image quality. Modern MR scanners are already operating at the point where further improvements in data acquisition speed by means of hardware and pulse sequence design are constrained by physical and physiological limitations. With the advent of parallel imaging techniques, this problem has partially been addressed. However, further reduction of imaging time is desired, making the development of methods which allow image reconstruction from reduced amount of data necessary. Recently, a new sampling theory under the name compressed sensing (CS) has emerged, suggesting that image reconstruction from reduced amount of data can be achieved by exploiting the signal sparsity. The ability to reconstruct images from small number of measurements provides a new method to accelerate the data acquisition in MRI. Initial studies have shown that compressed sensing has a great potential to improve the imaging speed in MRI. This thesis explores and extends the concept of applying compressed sensing to MRI. A successful CS reconstruction requires incoherent measurements,signal sparsity, and a nonlinear sparsity promoting reconstruction. To optimize the performance of CS, the acquisition, the sparsifying transform and the reconstruction have to be adapted to the application of interest. This work presents new approaches for sampling, signal sparsity and reconstruction, which are applied to three important applications: dynamic MR imaging, MR parameter mapping and chemical-shift based

[1]  D. Noll,et al.  Homodyne detection in magnetic resonance imaging. , 1991, IEEE transactions on medical imaging.

[2]  Dong Liang,et al.  Toeplitz random encoding MR imaging using compressed sensing , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[3]  P. Börnert,et al.  Accelerated MR parameter mapping using compressed sensing with model-based sparsifying transform , 2008 .

[4]  Diego Hernando,et al.  Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm , 2009, Magnetic resonance in medicine.

[5]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[6]  J Velikina,et al.  Highly constrained backprojection for time‐resolved MRI , 2006, Magnetic resonance in medicine.

[7]  Albert P. Chen,et al.  Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. , 2008, Journal of magnetic resonance.

[8]  Christina Triantafyllou,et al.  A 128‐channel receive‐only cardiac coil for highly accelerated cardiac MRI at 3 Tesla , 2008, Magnetic resonance in medicine.

[9]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[10]  Jingfei Ma,et al.  Method for efficient fast spin echo Dixon imaging , 2002, Magnetic resonance in medicine.

[11]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[12]  Peter Boesiger,et al.  Compressed sensing in dynamic MRI , 2008, Magnetic resonance in medicine.

[13]  Rick Chartrand,et al.  Exact Reconstruction of Sparse Signals via Nonconvex Minimization , 2007, IEEE Signal Processing Letters.

[14]  J. M. Pauly Compressive Chemical-Shift-Based Rapid Fat/Water Imaging , 2008 .

[15]  G M Bydder,et al.  The short TI inversion recovery sequence--an approach to MR imaging of the abdomen. , 1985, Magnetic resonance imaging.

[16]  J Hennig,et al.  Frequency resolved single‐shot MR imaging using stochastic k‐space trajectories , 1996, Magnetic resonance in medicine.

[17]  Jim M Wild,et al.  Compressed sensing in hyperpolarized 3He Lung MRI , 2010, Magnetic resonance in medicine.

[18]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[19]  A. Mertins,et al.  Compressive B 1 + mapping : Towards faster transmit coil sensitivity mapping , 2009 .

[20]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[21]  M. Livio The Golden Ratio: The Story of Phi, the World's Most Astonishing Number , 2002 .

[22]  D. Blezek,et al.  128‐channel body MRI with a flexible high‐density receiver‐coil array , 2008, Journal of magnetic resonance imaging : JMRI.

[23]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[24]  B. Rutt,et al.  Simple linear formulation for magnetostimulation specific to MRI gradient coils , 2001, Magnetic resonance in medicine.

[25]  A. Sherry,et al.  Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla* , 2008, Journal of Lipid Research.

[26]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[27]  F. Sebert,et al.  SparseSENSE: Randomly-Sampled Parallel Imaging using Compressed Sensing , 2007 .

[28]  M E Moseley,et al.  Evolution of apparent diffusion coefficient, diffusion-weighted, and T2-weighted signal intensity of acute stroke. , 2001, AJNR. American journal of neuroradiology.

[29]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[30]  Michael W. Marcellin,et al.  JPEG2000 - image compression fundamentals, standards and practice , 2013, The Kluwer international series in engineering and computer science.

[31]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[32]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Lundberg,et al.  Rapid magnetic resonance quantification on the brain: Optimization for clinical usage , 2008, Magnetic resonance in medicine.

[34]  Justin Romberg,et al.  Practical Signal Recovery from Random Projections , 2005 .

[35]  G. Gold,et al.  Iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL): Application with fast spin‐echo imaging , 2005, Magnetic resonance in medicine.

[36]  J. D. O'Sullivan,et al.  A Fast Sinc Function Gridding Algorithm for Fourier Inversion in Computer Tomography , 1985, IEEE Transactions on Medical Imaging.

[37]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[38]  M. Lustig,et al.  CS-Dixon : Compressed Sensing for Water-Fat Dixon Reconstruction , 2009 .

[39]  Scott B Reeder,et al.  Water–fat separation with bipolar multiecho sequences , 2008, Magnetic resonance in medicine.

[40]  J. Velikina,et al.  A Novel Approach for T 1 Relaxometry Using Constrained Reconstruction in Parametric Dimension , 2009 .

[41]  P. Börnert,et al.  Fast Single Breath-hold 3D Abdominal Imaging with Water-Fat Separation , 2007 .

[42]  J. J. van Vaals,et al.  “Keyhole” method for accelerating imaging of contrast agent uptake , 1993, Journal of magnetic resonance imaging : JMRI.

[43]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[44]  A. Mertins,et al.  Fast relaxation parameter mapping from undersampled data , 2008 .

[45]  L. Ying,et al.  Accelerating SENSE using compressed sensing , 2009, Magnetic resonance in medicine.

[46]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[47]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[48]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[49]  Jong Chul Ye,et al.  Improved k–t BLAST and k–t SENSE using FOCUSS , 2007, Physics in medicine and biology.

[50]  Charles H Cunningham,et al.  Temporal stability of adaptive 3D radial MRI using multidimensional golden means , 2009, Magnetic resonance in medicine.

[51]  A. Bilgin,et al.  Fast MR parameter mapping from highly undersampled data by Direct Reconstruction of Principal Component Coefficient Maps using Compressed Sensing , 2009 .

[52]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[53]  James H Holmes,et al.  Generalized k‐space decomposition with chemical shift correction for non‐cartesian water‐fat imaging , 2008, Magnetic resonance in medicine.

[54]  J. Pipe Motion correction with PROPELLER MRI: Application to head motion and free‐breathing cardiac imaging , 1999, Magnetic resonance in medicine.

[55]  O. Haraldseth,et al.  K‐space substitution: A novel dynamic imaging technique , 1993, Magnetic resonance in medicine.

[56]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[57]  W. T. Dixon Simple proton spectroscopic imaging. , 1984, Radiology.

[58]  Wenmiao Lu,et al.  Multiresolution field map estimation using golden section search for water‐fat separation , 2008, Magnetic resonance in medicine.

[59]  Alfred Mertins,et al.  Model-based Compressed Sensing reconstruction for MR parameter mapping , 2008 .

[60]  C. Hardy,et al.  Accelerated diffusion spectrum imaging in the human brain using compressed sensing , 2011, Magnetic resonance in medicine.

[61]  P. Lauterbur,et al.  Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance , 1973, Nature.

[62]  Zhi-Pei Liang,et al.  An efficient method for dynamic magnetic resonance imaging , 1994, IEEE Trans. Medical Imaging.

[63]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[64]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[65]  D. Nishimura,et al.  Reduced aliasing artifacts using variable‐density k‐space sampling trajectories , 2000, Magnetic resonance in medicine.

[66]  S. Ljunggren A simple graphical representation of fourier-based imaging methods , 1983 .

[67]  Peter Börnert,et al.  Three‐dimensional radial ultrashort echo‐time imaging with T2 adapted sampling , 2006, Magnetic resonance in medicine.

[68]  J. Frahm,et al.  Nonlinear Inversion with L 1-Wavelet Regularization – Application to Autocalibrated Parallel Imaging , 2007 .

[69]  Norbert J Pelc,et al.  Field map estimation with a region growing scheme for iterative 3‐point water‐fat decomposition , 2005, Magnetic resonance in medicine.

[70]  R M Henkelman,et al.  Diffusional anisotropy of T2 components in bovine optic nerve , 1998, Magnetic resonance in medicine.

[71]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[72]  F. Sebert,et al.  Compressed Sensing MRI with Random B1 field , 2007 .

[73]  Qing-San Xiang,et al.  Two‐point water‐fat imaging with partially‐opposed‐phase (POP) acquisition: An asymmetric Dixon method , 2006, Magnetic resonance in medicine.

[74]  A. Mertins,et al.  Partial Fourier Compressed Sensing , 2009 .

[75]  J. Cuppen,et al.  Reducing MR imaging time by one-sided reconstruction , 1987 .

[76]  C. Ahn,et al.  High-Speed Spiral-Scan Echo Planar NMR Imaging-I , 1986, IEEE Transactions on Medical Imaging.

[77]  P. Tofts Quantitative MRI of the Brain , 2003 .

[78]  Peter Boesiger,et al.  k‐t BLAST and k‐t SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations , 2003, Magnetic resonance in medicine.

[79]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[80]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[81]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[82]  Yoram Bresler,et al.  Further results on spectrum blind sampling of 2D signals , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[83]  Wenmiao Lu,et al.  Phase and amplitude correction for multi‐echo water–fat separation with bipolar acquisitions , 2010, Journal of magnetic resonance imaging : JMRI.

[84]  Walter F Block,et al.  Time‐resolved contrast‐enhanced imaging with isotropic resolution and broad coverage using an undersampled 3D projection trajectory , 2002, Magnetic resonance in medicine.

[85]  J. P. Haldar,et al.  Data Acquisition Considerations for Compressed Sensing in MRI , 2007 .

[86]  S. Vasanawala,et al.  kt SPIRiT for Ultra-Fast Cardiac Cine Imaging with Prospective or Retrospective Cardiac Gating , 2009 .

[87]  P. Mansfield Multi-planar image formation using NMR spin echoes , 1977 .

[88]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[89]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[90]  Mark Bydder,et al.  Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging , 2003, Journal of computer assisted tomography.

[91]  Peter Börnert,et al.  Highly Undersampled 3D Golden Ratio Radial Imaging with Iterative Reconstruction , 2008 .

[92]  G M Bydder,et al.  Magnetic resonance imaging of short T2 components in tissue. , 2003, Clinical radiology.

[93]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[94]  Olaf Dössel,et al.  An Optimal Radial Profile Order Based on the Golden Ratio for Time-Resolved MRI , 2007, IEEE Transactions on Medical Imaging.

[95]  R. Stollberger,et al.  Tailored 3 D Random Sampling Patterns for Nonlinear Parallel Imaging , 2009 .

[96]  G H Glover,et al.  Three‐point dixon technique for true water/fat decomposition with B0 inhomogeneity correction , 1991, Magnetic resonance in medicine.

[97]  Peter M. Jakob,et al.  Accelerated Dynamic Imaging by Reconstructing Sparse Differences using Compressed Sensing , 2008 .

[98]  S. Mallat A wavelet tour of signal processing , 1998 .

[99]  D. Donoho,et al.  SPIR-iT : Autocalibrating Parallel Imaging Compressed Sensing , 2008 .

[100]  F H Epstein,et al.  Adaptive sensitivity encoding incorporating temporal filtering (TSENSE) † , 2001, Magnetic resonance in medicine.

[101]  D Matthaei,et al.  1H NMR chemical shift selective (CHESS) imaging. , 1985, Physics in medicine and biology.

[102]  Jeffrey A. Fessler,et al.  Fast Joint Reconstruction of Dynamic $R_2^*$ and Field Maps in Functional MRI , 2008, IEEE Transactions on Medical Imaging.

[103]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[104]  Johnpauly A k-Space Analysis of Small-Tip-Angle Excitation , 2012 .

[105]  D. Donoho For most large underdetermined systems of equations, the minimal 𝓁1‐norm near‐solution approximates the sparsest near‐solution , 2006 .

[106]  A. Manduca,et al.  Nonconvex Compressive Sensing with Parallel Imaging for Highly Accelerated 4 D CE-MRA , 2009 .

[107]  M. Fornasier,et al.  Iterative thresholding algorithms , 2008 .

[108]  A. Crawley,et al.  A comparison of one‐shot and recovery methods in T1 imaging , 1988, Magnetic resonance in medicine.

[109]  D. K. Sodickson,et al.  Accelerated Breath-Hold Multi-Echo FSE Pulse Sequence Using Compressed Sensing and Parallel Imaging for T 2 Measurement in the Heart , 2009 .

[110]  Jong Chul Ye,et al.  k‐t FOCUSS: A general compressed sensing framework for high resolution dynamic MRI , 2009, Magnetic resonance in medicine.

[111]  R. Henkelman,et al.  Why fat is bright in rare and fast spin‐echo imaging , 1992, Journal of magnetic resonance imaging : JMRI.

[112]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[113]  Ping Feng,et al.  Spectrum-blind minimum-rate sampling and reconstruction of multiband signals , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[114]  K. Fishbein,et al.  Multicomponent T2 relaxation analysis in cartilage , 2009, Magnetic resonance in medicine.

[115]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[116]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[117]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[118]  Y. Bresler,et al.  Spectrum-blind minimum-rate sampling and reconstruction of 2-D multiband signals , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[119]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[120]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[121]  Peter G. Anderson,et al.  Linear pixel shuffling for image processing: an introduction , 1993, J. Electronic Imaging.

[122]  Michael Lustig,et al.  3D compressed sensing for highly accelerated hyperpolarized 13C MRSI with in vivo applications to transgenic mouse models of cancer , 2010, Magnetic resonance in medicine.

[123]  D. Peters,et al.  Undersampled projection reconstruction applied to MR angiography , 2000, Magnetic resonance in medicine.

[124]  Michael Elad,et al.  Why Simple Shrinkage Is Still Relevant for Redundant Representations? , 2006, IEEE Transactions on Information Theory.

[125]  K. F. King,et al.  Breath-held highly-accelerated 2D Fourier-velocity encoded MRI using compressed sensing , 2009 .

[126]  D. Twieg The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods. , 1983, Medical physics.

[127]  R. Henkelman,et al.  Practical Implementation and Optimization of One‐shot T1 imaging , 1991, Magnetic resonance in medicine.

[128]  G H Glover,et al.  Projection Reconstruction Techniques for Reduction of Motion Effects in MRI , 1992, Magnetic resonance in medicine.

[129]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[130]  Ferenc A. Jolesz,et al.  Water diffusion, T2, and compartmentation in frog sciatic nerve , 1999 .

[131]  Armando Manduca,et al.  Highly Undersampled Magnetic Resonance Image Reconstruction via Homotopic $\ell_{0}$ -Minimization , 2009, IEEE Transactions on Medical Imaging.

[132]  R. Mark Henkelman,et al.  Analysis of biological NMR relaxation data with continuous distributions of relaxation times , 1986 .

[133]  Robert D. Nowak,et al.  A bound optimization approach to wavelet-based image deconvolution , 2005, IEEE International Conference on Image Processing 2005.

[134]  F. Korosec,et al.  PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. , 2005, AJNR. American journal of neuroradiology.

[135]  M. Singh,et al.  Diffusion histogram as a marker of fiber crossing within a voxel , 2009 .

[136]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[137]  S J Graham,et al.  Magnetic resonance properties of ex vivo breast tissue at 1.5 T , 1997, Magnetic resonance in medicine.

[138]  V Rasche,et al.  MR fluoroscopy using projection reconstruction multi‐gradient‐echo (prMGE) MRI , 1999, Magnetic resonance in medicine.

[139]  Michael Elad,et al.  Coordinate and subspace optimization methods for linear least squares with non-quadratic regularization , 2007 .

[140]  Mathews Jacob,et al.  Algebraic Decomposition of Fat and Water in MRI , 2009, IEEE Transactions on Medical Imaging.

[141]  R. Henkelman,et al.  Quantitative Two‐Dimensional time Correlation Relaxometry , 1991, Magnetic resonance in medicine.

[142]  Robert D. Nowak,et al.  An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..

[143]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[144]  Gregory K. Wallace,et al.  The JPEG still picture compression standard , 1991, CACM.

[145]  Anthony Traboulsee,et al.  Complementary information from multi-exponential T 2 relaxation and diffusion tensor imaging reveals differences between multiple sclerosis lesions , 2008, NeuroImage.

[146]  H. Landau Necessary density conditions for sampling and interpolation of certain entire functions , 1967 .

[147]  D. Feinberg,et al.  Halving MR imaging time by conjugation: demonstration at 3.5 kG. , 1986, Radiology.

[148]  Peter M. Jakob,et al.  A Combination of Nonconvex Compressed Sensing and GRAPPA (CS-GRAPPA) , 2009 .

[149]  K. F. King,et al.  Accelerated 3 D phase-contrast imaging using adaptive compressed sensing with no free parameters , 2009 .

[150]  Greg Humphreys,et al.  A spatial data structure for fast Poisson-disk sample generation , 2006, ACM Trans. Graph..

[151]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[152]  Dong Liang,et al.  k-t CSPI: A dynamic MRI reconstruction framework for combining compressed sensing and parallel imaging , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[153]  Kay Nehrke,et al.  k‐t PCA: Temporally constrained k‐t BLAST reconstruction using principal component analysis , 2009, Magnetic resonance in medicine.

[154]  R. Sepponen,et al.  A Method for Chemical Shift Imaging: Demonstration of Bone Marrow Involvement with Proton Chemical Shift Imaging , 1984, Journal of computer assisted tomography.

[155]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[156]  S. Reeder,et al.  Multiecho water‐fat separation and simultaneous R  2* estimation with multifrequency fat spectrum modeling , 2008, Magnetic resonance in medicine.