Biosynthesis of Metal and Metal Oxide Nanoparticles

Bioresource-based green synthesis of nanoparticles has gained significant interest as an emerging technology to reduce the toxicity of nanoparticles commonly associated with conventional chemical synthesis approaches. Studies on green synthesis of metal nanoparticles have been carried out with various biological materials including from bacteria, fungi, and plant extracts. Plant extracts in particular have been extensively used for the synthesis of metal and metal oxide nanoparticles, and this is due to the presence of essential phytochemicals in plant extracts especially from the leaves. Leaf extract contains various types of phytochemicals such as terpenoids, flavonoids, ketones, aldehydes, amides, and carboxylic acids, which play a major role in formulating and enhancing the bioactivity of the nanoparticles. This article discusses flavonoids as an essential phytochemical for the formation of metal and metal oxide nanoparticles and enhancement of their bio-functionality and compatibility. In addition, bioprocess developments for the synthesis of metal as well as metal oxide nanoparticles from various biological materials are discussed.

[1]  M. Megharaj,et al.  Characterization of Iron–Polyphenol Nanoparticles Synthesized by Three Plant Extracts and Their Fenton Oxidation of Azo Dye , 2014 .

[2]  D. Philip,et al.  Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. , 2009, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  H. V. Rasika Dias,et al.  The greener synthesis of nanoparticles. , 2013, Trends in Biotechnology.

[4]  Sudheer Kumar Singh,et al.  Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain , 2009 .

[5]  G. Southam,et al.  Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)--chloride complexes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[6]  L. Bharadwaj,et al.  Generation of selenium containing nano-structures by soil bacterium Pseudomonas Aeruginosa , 2008 .

[7]  N. Kamarulzaman,et al.  Growth mechanisms of MgO nanocrystals via a sol-gel synthesis using different complexing agents , 2014, Nanoscale Research Letters.

[8]  R. Sanghi,et al.  A facile green extracellular biosynthesis of CdS nanoparticles by immobilized fungus , 2009 .

[9]  Ning Gu,et al.  Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata , 2007 .

[10]  R. Murray,et al.  Sites of metal deposition in the cell wall of Bacillus subtilis , 1980, Journal of bacteriology.

[11]  Prof Vikas Kumar,et al.  Biosynthesis of silver nanoparticles using Eclipta leaf , 2009, Biotechnology progress.

[12]  Vipul Bansal,et al.  Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. , 2006, Journal of the American Chemical Society.

[13]  Clément Sanchez,et al.  Sol-gel chemistry of transition metal oxides , 1988 .

[14]  Bruce Ravel,et al.  Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. , 2006, Environmental science & technology.

[15]  R. Naidu,et al.  Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. , 2013, Journal of colloid and interface science.

[16]  D. Narayana,et al.  BIOFLAVONOIDS CLASSIFICATION, PHARMACOLOGICAL, BIOCHEMICAL EFFECTS AND THERAPEUTIC POTENTIAL , 2001 .

[17]  J. Ismail,et al.  Synthesis and characterization of silver nanoparticles in natural rubber , 2007 .

[18]  K. Deplanche,et al.  Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans , 2008, Biotechnology and bioengineering.

[19]  Highly conformal deposition of copper nanocylinders uniformly electrodeposited in nanoporous alumina template for ordered catalytic applications , 2012 .

[20]  C. Granqvist,et al.  Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. , 2001, Trends in biotechnology.

[21]  W. Chan,et al.  Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. , 2009, Journal of the American Chemical Society.

[22]  Absar Ahmad,et al.  Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium Oxysporum , 2007 .

[23]  A. A. Rahuman,et al.  Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles , 2012 .

[24]  A. Ingle,et al.  Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles , 2009 .

[25]  T. C. Taranath,et al.  Biosynthesis of nanoparticles using microbes- a review. , 2014, Colloids and surfaces. B, Biointerfaces.

[26]  D. Manter,et al.  Bio-Reduction of Selenite to Elemental Red Selenium by Tetrathiobacter kashmirensis , 2008, Current Microbiology.

[27]  A. Pandey,et al.  Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants. , 2011, Cellular and molecular biology.

[28]  Yujun Shi Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds. , 2015, Accounts of chemical research.

[29]  Ruchi Yadav,et al.  Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[30]  P. Biswas,et al.  TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.)☆ , 2014, Biotechnology reports.

[31]  I. R. Harris,et al.  Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307 , 2002, Biotechnology and bioengineering.

[32]  Ahmad Reza Shahverdi,et al.  Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach , 2007 .

[33]  S. Basavaraja,et al.  Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. , 2009, Colloids and surfaces. B, Biointerfaces.

[34]  A. Ingle,et al.  Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus , 2009, Letters in applied microbiology.

[35]  Seema B. Sharma,et al.  Green Synthesis of Silver Nanoparticles Using Extracts of Ananas comosus , 2012 .

[36]  M. Rai,et al.  Phytofabrication of silver nanoparticles by leaf extract of Datura metel: Hypothetical mechanism involved in synthesis , 2009 .

[37]  S. Dmitrienko,et al.  Formation of plasmonic silver nanoparticles by flavonoid reduction: A comparative study and application for determination of these substances. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[38]  Siavash Iravani,et al.  Green synthesis of metal nanoparticles using plants , 2011 .

[39]  L. Boulekbache‐Makhlouf,et al.  Total phenolic content, antioxidant and antibacterial activities of fruits of Eucalyptus globulus cultivated in Algeria , 2013, Industrial Crops and Products.

[40]  Jian Zhang,et al.  Physical and chemical stability of drug nanoparticles. , 2011, Advanced drug delivery reviews.

[41]  R. Sanghi,et al.  Biomimetic synthesis and characterisation of protein capped silver nanoparticles. , 2009, Bioresource technology.

[42]  Y. Yun,et al.  Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts , 2013 .

[43]  Satyajyoti Senapati,et al.  Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. , 2002, Journal of the American Chemical Society.

[44]  R. Frankel,et al.  Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1 , 2006 .

[45]  Absar Ahmad,et al.  Geranium Leaf Assisted Biosynthesis of Silver Nanoparticles , 2003, Biotechnology progress.

[46]  U. S. Mohanty Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals , 2011 .

[47]  A. Ingle,et al.  Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles , 2008 .

[48]  Timothy J Shaw,et al.  Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. , 2009, Small.

[49]  B. Sreedhar,et al.  Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach , 2010 .

[50]  X. Song,et al.  Morphology Evolution of ZnO Submicroparticles Induced by Laser Irradiation and Their Enhanced Tribology Properties by Compositing with Al2O3 Nanoparticles , 2015 .

[51]  A. A. Rahuman,et al.  Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors , 2011, Parasitology Research.

[52]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[53]  Vipul Bansal,et al.  Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum , 2004 .

[54]  H. Bai,et al.  Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. , 2009, Colloids and surfaces. B, Biointerfaces.

[55]  Shiv Shankar,et al.  Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes , 2003 .

[56]  B. Kim,et al.  Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts , 2009 .

[57]  D. Kasote,et al.  Synthesis of Silver Nanoparticles Using Flaxseed Hydroalcoholic Extract and its Antimicrobial Activity , 2013 .

[58]  K. Kalishwaralal,et al.  Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis , 2008 .

[59]  E. Wang,et al.  Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin , 2007 .

[60]  J. Gearhart,et al.  In vitro toxicity of nanoparticles in BRL 3A rat liver cells. , 2005, Toxicology in vitro : an international journal published in association with BIBRA.

[61]  S. Iravani Bacteria in Nanoparticle Synthesis: Current Status and Future Prospects , 2014, International scholarly research notices.

[62]  S. Basavaraja,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum , 2008 .

[63]  J. B. Collins,et al.  Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[64]  K. Gopal,et al.  Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract , 2010 .

[65]  A. V. B. Reddy,et al.  Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[66]  B. Sreedhar,et al.  Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy , 2012, Nanotechnology.

[67]  Zhifeng Yi,et al.  Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants , 2013, Journal of Nanoparticle Research.

[68]  U. Banerjee,et al.  Free Radical Scavenging and Antioxidant Activity of Silver Nanoparticles Synthesized from Flower Extract of Rhododendron dauricum , 2012 .

[69]  T. Scott,et al.  Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes , 2011 .

[70]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[71]  Sudesh Kumar Yadav,et al.  Biosynthesis of nanoparticles: technological concepts and future applications , 2008 .

[72]  Absar Ahmad,et al.  Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract , 2006, Biotechnology progress.

[73]  Satyajyoti Senapati,et al.  Extracellular biosynthesis of bimetallic Au-Ag alloy nanoparticles. , 2005, Small.

[74]  Jose R. Peralta-Videa,et al.  Formation and Growth of Au Nanoparticles inside Live Alfalfa Plants , 2002 .

[75]  Tomoya Uruga,et al.  Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. , 2007, Journal of biotechnology.

[76]  J. B. Collins,et al.  Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols , 2009 .

[77]  U. Mony,et al.  Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. , 2012, ACS applied materials & interfaces.

[78]  C. Vieira,et al.  Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks , 2013, BioMed research international.

[79]  Warren C W Chan,et al.  Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. , 2007, Nano letters.

[80]  S. Balaji,et al.  Cashew Apple Juice (Anacardium occidentale L.) Speeds Up the Synthesis of Silver Nanoparticles , 2012 .

[81]  A. Philipse,et al.  Magnetic Colloids from Magnetotactic Bacteria: Chain Formation and Colloidal Stability , 2002 .

[82]  Dinesh Singh,et al.  Mechanical Milling: a Top Down Approach for the Synthesis of Nanomaterials and Nanocomposites , 2012 .

[83]  Lynne E. Macaskie,et al.  Enzymatic Recovery of Elemental Palladium by Using Sulfate-Reducing Bacteria , 1998, Applied and Environmental Microbiology.

[84]  K. Kathiresan,et al.  Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. , 2009, Colloids and surfaces. B, Biointerfaces.

[85]  Kelly E Heim,et al.  Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. , 2002, The Journal of nutritional biochemistry.

[86]  Hong-Juan Bai,et al.  Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides , 2009 .

[87]  Toshiyuki Nomura,et al.  Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae , 2007 .

[88]  A. R. Binupriya,et al.  Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. , 2010, Colloids and surfaces. B, Biointerfaces.

[89]  R. P. Nachane,et al.  Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. , 2006, Colloids and surfaces. B, Biointerfaces.

[90]  Robert J. Lauf,et al.  Microbial synthesis and the characterization of metal-substituted magnetites , 2001 .

[91]  Catherine J. Murphy,et al.  Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? , 2010, Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology.

[92]  V. Gopinath,et al.  Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. , 2013, Colloids and surfaces. B, Biointerfaces.

[93]  Aniket Gade,et al.  Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[94]  K. Narayanan,et al.  Biological synthesis of metal nanoparticles by microbes. , 2010, Advances in colloid and interface science.

[95]  Ki Chang Song,et al.  Preparation of colloidal silver nanoparticles by chemical reduction method , 2009 .

[96]  Absar Ahmad,et al.  Fungus-mediated biosynthesis of silica and titania particles , 2005 .

[97]  C. Nachiyar,et al.  Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. , 2012, Asian Pacific journal of tropical biomedicine.

[98]  Florian Rampp,et al.  Protective Effects of Flavonoids Contained in the Red Vine Leaf on Venular Endothelium against the Attack of Activated Blood Components in vitro , 2003, Arzneimittelforschung.

[99]  K. C. Bhainsa,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. , 2006, Colloids and surfaces. B, Biointerfaces.

[100]  T. Balaji,et al.  Biogenic synthesis of Fe3O4 magnetic nanoparticles using plantain peel extract , 2013 .

[101]  G. Kartopu Fabrication and Applications of Metal Nanowire Arrays Electrodeposited in Ordered Porous Templates , 2010 .

[102]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[103]  S. Shivaji,et al.  Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria , 2011 .

[104]  S. Karuppuchamy,et al.  Biosynthesis of Titanium Dioxide and Zinc Oxide Nanoparticles from Natural Sources: A Review , 2015 .

[105]  Natalia L. Pacioni,et al.  Synthetic Routes for the Preparation of Silver Nanoparticles , 2015 .

[106]  Indranil Sarkar,et al.  Extracellular biosynthesis of magnetite using fungi. , 2006, Small.

[107]  R. Kumar,et al.  Extra-/Intracellular Biosynthesis of Gold Nanoparticles by an Alkalotolerant Fungus, Trichothecium sp. , 2005 .

[108]  Mingyuan Gao,et al.  Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction. , 2008, The journal of physical chemistry. B.

[109]  Rakesh Kumar,et al.  Plant-Mediated Green Synthesis of Iron Nanoparticles , 2014 .

[110]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[111]  Yusuf Chisti,et al.  Synthesis of metallic nanoparticles using plant extracts. , 2013, Biotechnology advances.

[112]  N. Karak,et al.  One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal , 2014 .

[113]  H. Haraguchi,et al.  Flavonoids in Rosmarinus officinalis leaves. , 1994, Phytochemistry.

[114]  Sudhakar R. Sainkar,et al.  Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis , 2001 .

[115]  R. Venckatesh,et al.  Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[116]  J. Manthey Biological Properties of Flavonoids Pertaining to Inflammation , 2000, Microcirculation.

[117]  S. Stavrev,et al.  Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: An atomic force microscopy study , 2007 .

[118]  Jiale Huang,et al.  Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf , 2010 .

[119]  Mayur Dhaygude,et al.  Green synthesis of TiO2 nanoparticles by using aqueous extract of Jatropha curcas L. latex , 2012 .

[120]  Younan Xia,et al.  A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. , 2010, Nano letters.

[121]  He Ning,et al.  Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations , 2006 .

[122]  Zhiqiang Wang Iron Complex Nanoparticles Synthesized by Eucalyptus Leaves , 2013 .

[123]  R. Blakemore,et al.  Structure, morphology and crystal growth of bacterial magnetite , 1984, Nature.

[124]  N. Nasri,et al.  Total phenolic contents and antioxidant activities of pomegranate peel, seed, leaf and flower , 2012 .

[125]  Wei Zhu,et al.  The anthocyanin cyanidin-3-O-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: Involvement of a cAMP-PKA-dependent signaling pathway. , 2012, Free radical biology & medicine.

[126]  S. Gan,et al.  In Vitro Antioxidant Effects of Aloe barbadensis Miller Extracts and the Potential Role of These Extracts as Antidiabetic and Antilipidemic Agents on Streptozotocin-Induced Type 2 Diabetic Model Rats , 2012, Molecules.

[127]  Jianzhang Zhou,et al.  Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route , 2009 .

[128]  C. Singh,et al.  Biocompatible synthesis of silver and gold nanoparticles using leaf extract of Dalbergia sissoo , 2012 .

[129]  S. Lindsay,et al.  Mass transport through vertically aligned large diameter MWCNTs embedded in parylene , 2012, Nanotechnology.

[130]  G. Oskam Metal oxide nanoparticles: synthesis, characterization and application , 2006 .

[131]  Green Chemistry Based Benign Routes for Nanoparticle Synthesis , 2014 .

[132]  K. A. El-Nour,et al.  Synthesis and applications of silver nanoparticles , 2010 .

[133]  A. Love,et al.  “Green” Nanotechnologies: Synthesis of Metal Nanoparticles Using Plants , 2014, Acta naturae.

[134]  Ajay Misra,et al.  GREEN SYNTHESIS OF SILVER NANOPARTICLES USING LATEX OF JATROPHA CURCAS , 2009 .

[135]  D. P. Cunningham,et al.  Precipitation of cadmium by Clostridium thermoaceticum , 1993, Applied and environmental microbiology.

[136]  Mariekie Gericke,et al.  Microbial production of gold nanoparticles , 2006 .

[137]  Cynthia Butler Food Phytochemicals for Cancer Prevention II. Teas, Spices and Herbs , 1995, Economic Botany.

[138]  A. Belcher,et al.  Bacterial biosynthesis of cadmium sulfide nanocrystals. , 2004, Chemistry & biology.

[139]  Jiale Huang,et al.  Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism. , 2013, Journal of colloid and interface science.

[140]  R. Das,et al.  Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica , 2010 .

[141]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[142]  T. Folks,et al.  Inhibition of HIV activation in latently infected cells by flavonoid compounds. , 1996, AIDS research and human retroviruses.

[143]  Christine Pohl,et al.  Gold nanoparticles induce cytotoxicity in the alveolar type-II cell lines A549 and NCIH441 , 2009, Particle and Fibre Toxicology.

[144]  S. Iravani,et al.  Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei , 2012 .

[145]  R. P. Nachane,et al.  Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus , 2007 .

[146]  Vincent Castranova,et al.  Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling , 2009, Particle and Fibre Toxicology.

[147]  Yi Tang,et al.  Future of nano-/hierarchical zeolites in catalysis: gaseous phase or liquid phase system , 2015 .

[148]  Po-Tsun Liu,et al.  Efficiency enhancement of non-selenized Cu(In,Ga)Se2 solar cells employing scalable low-cost antireflective coating , 2014, Nanoscale Research Letters.

[149]  P. Selvakumar,et al.  Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. , 2010, Colloids and surfaces. B, Biointerfaces.

[150]  Kumar,et al.  Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum , 2003 .

[151]  Sandra C. Fuchs,et al.  HIV Infection and Cardiovascular Disease , 2013, The Scientific World Journal.

[152]  P. McCormick,et al.  Mechanochemical synthesis of nanoparticles , 2004 .

[153]  G. Blanchard,et al.  Formation of gold nanoparticles using amine reducing agents. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[154]  Sebastian P Fernandez,et al.  Central nervous system depressant action of flavonoid glycosides. , 2006, European journal of pharmacology.

[155]  Density control of electrodeposited Ni nanoparticles/nanowires inside porous anodic alumina templates by an exponential anodization voltage decrease. , 2008, Nanotechnology.

[156]  L. Hench,et al.  The sol-gel process , 1990 .

[157]  L. Love,et al.  Magnetic properties of biosynthesized magnetite nanoparticles , 2005, IEEE Transactions on Magnetics.

[158]  K. Suslick,et al.  Sonochemical synthesis of amorphous iron , 1991, Nature.

[159]  M. Drofenik,et al.  SYNTHESIS OF MATERIALS WITHIN REVERSE MICELLES , 2005 .

[160]  Li Wang,et al.  Synthesis of CdS nanoparticles based on DNA network templates , 2008, Nanotechnology.

[161]  F. Chemat,et al.  Antioxidant activity, phenolic and flavonoid content in leaves, flowers, stems and seeds of mallow ( Malva sylvestris L.) from North Western of Algeria , 2014 .

[162]  Jingjing Xu,et al.  Designing polymer surfaces via vapor deposition , 2010 .

[163]  S. Memon,et al.  Structurally diverse alkaloids from Tecomella undulata G. Don flowers , 2014 .

[164]  Mayur Dhaygude,et al.  Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex , 2011 .

[165]  Mingyuan Gao,et al.  One‐Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles , 2005 .

[166]  Andrew J Lamb,et al.  Antimicrobial activity of flavonoids , 2005, International Journal of Antimicrobial Agents.

[167]  D. Lovley,et al.  Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens , 1989, Applied and environmental microbiology.

[168]  S. Zinjarde,et al.  Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. , 2013, Journal of contaminant hydrology.

[169]  Changhong Liu,et al.  Homogeneous carbon nanotube/carbon composites prepared by catalyzed carbonization approach at low temperature , 2011 .

[170]  Li Zhang,et al.  Green synthesis of silver nanoparticles using Capsicum annuum L. extract , 2007 .

[171]  K. Yokoyama,et al.  The conjugation of amyloid beta protein on the gold colloidal nanoparticles’ surfaces , 2007 .

[172]  I. Abeysinghe,et al.  Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. , 2004, Archives of biochemistry and biophysics.

[173]  M. Rai,et al.  Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants , 2011, Applied Microbiology and Biotechnology.

[174]  Stephen J. Johnson,et al.  Phenolics Impart Au3+-Stress Tolerance to Cowpea by Generating Nanoparticles , 2014, PloS one.

[175]  Ji Ming Wang,et al.  Flavonoid baicalin inhibits HIV-1 infection at the level of viral entry. , 2000, Biochemical and biophysical research communications.

[176]  R. Sivaraj,et al.  Green synthesized ZnO nanoparticles against bacterial and fungal pathogens , 2012 .

[177]  S. Curran,et al.  Formation of Tellurium Nanocrystals during Anaerobic Growth of Bacteria That Use Te Oxyanions as Respiratory Electron Acceptors , 2007, Applied and Environmental Microbiology.

[178]  Yadong Li,et al.  Green chemistry for nanoparticle synthesis. , 2015, Chemical Society reviews.

[179]  T. Vijaya,et al.  Effectiveness of flavonoid-rich leaf extract of Acalypha indica in reversing experimental myocardial ischemia: biochemical and histopathological evidence. , 2012, Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine.

[180]  Tao Wang,et al.  Light-induced synthesis of clean-surface PdPt@Pt core–shell nanoparticles with excellent electrocatalytic activity , 2015 .

[181]  Anjum Fatma,et al.  Rapid synthesis of silver nanoparticles using dried medicinal plant of basil. , 2010, Colloids and surfaces. B, Biointerfaces.

[182]  C. Noguera Physics and Chemistry at Oxide Surfaces: Contents , 1996 .

[183]  Y. Zeiri,et al.  Green synthesis of gold nanoparticles using plant extracts as reducing agents , 2014, International journal of nanomedicine.

[184]  G. Rajakumar,et al.  Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. , 2011, Acta tropica.

[185]  T. Mandal,et al.  Tryptophan-based peptides to synthesize gold and silver nanoparticles: a mechanistic and kinetic study. , 2007, Chemistry.

[186]  W. Verstraete,et al.  Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. , 2005, Environmental microbiology.

[187]  D. A. Russell,et al.  Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes , 1995, Archives of Microbiology.

[188]  C. Delerue-Matos,et al.  Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. , 2013, The Science of the total environment.

[189]  D. Lovley,et al.  Fe(III) and S0 reduction by Pelobacter carbinolicus , 1995, Applied and environmental microbiology.

[190]  Absar Ahmad,et al.  Structure and microbial synthesis of sub-10 nm Bi2O3 nanocrystals. , 2008, Journal of nanoscience and nanotechnology.

[191]  G. Southam,et al.  The in vitro formation of placer gold by bacteria , 1994 .

[192]  E. Roden,et al.  Dissimilatory Fe(III) Reduction by the Marine Microorganism Desulfuromonas acetoxidans , 1993, Applied and environmental microbiology.

[193]  M B Katan,et al.  Dietary flavonoids: intake, health effects and bioavailability. , 1999, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[194]  S. Macnaughton,et al.  Developments in terrestrial bacterial remediation of metals. , 1999, Current opinion in biotechnology.

[195]  Liang Shi,et al.  c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis , 2006, PLoS biology.

[196]  B. Sreedhar,et al.  Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[197]  Rasesh Y Parikh,et al.  Biological synthesis of metallic nanoparticles. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[198]  Ashok Kumar,et al.  On the synthesis and optical absorption studies of nano-size magnesium oxide powder , 2008 .