Rapid-tuning device for CO2 heterodyne detection lidar

A device for rapid‐tuning cw, Q‐switched lasers for a CO2 heterodyne detection lidar is presented. It is shown that it is possible to utilize galvanometer‐driven mirrors to rapidly switch wavelengths over randomly selected lasing transitions in the 9–11 μm portion of the spectrum. Both a transmitter and a local oscillator are simultaneously switched between transitions while still achieving the frequency stability typically required for a coherent lidar system.

[1]  G M Carter,et al.  Electrooptically Q-switched CO(2) waveguide laser. , 1979, Applied optics.

[2]  Jay A. Fox,et al.  Evaluation of a galvanometric scanner for rapid tuning of CO2 lasers , 1989 .

[3]  R. Hardesty,et al.  Coherent DIAL measurement of range-resolved water vapor concentration. , 1984, Applied optics.

[4]  N Menyuk,et al.  Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging. , 1985, Applied optics.

[5]  N Menyuk,et al.  Temporal correlation measurements of pulsed dual CO(2) lidar returns. , 1981, Optics letters.

[6]  N Menyuk,et al.  Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar. , 1983, Applied optics.

[7]  J. Fox,et al.  High speed tuning mechanism for CO2 lidar systems. , 1986, Applied optics.

[8]  N Menyuk,et al.  Laser remote sensing of atmospheric ammonia using a CO2 lidar system. , 1985, Applied optics.

[9]  E. Murray,et al.  Remote measurement of ethylene using a CO(2) differential-absorption lidar. , 1978, Applied optics.

[10]  Dennis K. Killinger,et al.  Remote probing of the atmosphere using a CO 2 DIAL system , 1981 .

[11]  R. C. Robbins,et al.  Calibrated remote measurement of NO2 using the differential‐absorption backscatter technique , 1974 .

[12]  J A Fox,et al.  Practical considerations for the design of CO(2) lidar systems. , 1988, Applied optics.

[13]  Richard Anderson Quarterwaveplate and Fresnel rhomb compared in the 10-microm CO(2) laser emission region. , 1988, Applied optics.

[14]  T. Mori,et al.  Sensitivity of coherent range-resolved differential absorption lidar. , 1984, Applied optics.

[15]  R. Harney Laser prf considerations in differential absorption lidar applications. , 1983, Applied optics.

[16]  S Marcus,et al.  Compact CO2 laser for infrared heterodyne radar. , 1978, The Review of scientific instruments.