Experimental and numerical simulation study on impact response of TC4/PEEK/Cf laminates under different mass impactors

[1]  S. Edwardson,et al.  Experimental and numerical characterization of titanium-based fibre metal laminates , 2020 .

[2]  G. Liaghat,et al.  Experimental and numerical investigation of the impact response of elastomer layered fiber metal laminates (EFMLs) , 2020, Composite Structures.

[3]  Yaoyao Shi,et al.  Experimental investigation of the double impact position effect on the mechanical behavior of low-velocity impact in CFRP laminates , 2020 .

[4]  Dian‐sen Li,et al.  Numerical simulation of bolted joint composite laminates under low-velocity impact , 2020 .

[5]  Arun Raju,et al.  Recent researches in fiber reinforced composite materials: A review , 2020 .

[6]  J. Dear,et al.  The behaviour of fibre-reinforced composites subjected to a soft impact-loading: An experimental and numerical study , 2020 .

[7]  Jinglei Yang,et al.  A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties , 2020 .

[8]  Wentao He,et al.  Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches , 2019, Thin-Walled Structures.

[9]  Yu Shi,et al.  Effect of surface micro-pits on mode-II fracture toughness of Ti-6Al-4V/PEEK interface , 2019 .

[10]  Guangyong Sun,et al.  Investigation on impact behavior of FMLs under multiple impacts with the same total energy: Experimental characterization and numerical simulation , 2019, Composite Structures.

[11]  J. Tirillò,et al.  Effect of temperature and fiber type on impact behavior of thermoplastic fiber metal laminates , 2019, Composite Structures.

[12]  M. Hayat,et al.  Titanium metal matrix composites: An overview , 2019, Composites Part A: Applied Science and Manufacturing.

[13]  I. Guz,et al.  Effects of thermal gradient on failure of a thermoplastic composite pipe (TCP) riser leg , 2019, International Journal of Pressure Vessels and Piping.

[14]  Chao Zhang,et al.  Finite element simulation of damage in fiber metal laminates under high velocity impact by projectiles with different shapes , 2019, Composite Structures.

[15]  G. Corderley,et al.  Failure modes in a carbon / titanium fibre metal laminate under hyper-velocity impact , 2019, International Journal of Impact Engineering.

[16]  H. Pettermann,et al.  Modeling, simulation, and experiments of high velocity impact on laminated composites , 2018, Composite Structures.

[17]  G. Chai,et al.  Influence of Fiber Type on The Impact Response of Titanium-based Fiber-metal Laminates , 2018 .

[18]  H. Morshedi,et al.  The effect of aluminum and titanium sequence on ballistic limit of bi-metal 2/1 FMLs , 2018 .

[19]  E. Sideridis,et al.  Ballistic impact response of fiber–metal laminates and monolithic metal plates consisting of different aluminum alloys , 2017 .

[20]  Reza Vaziri,et al.  Application of the local cohesive zone method to numerical simulation of composite structures under impact loading , 2017 .

[21]  F. Aymerich,et al.  Numerical simulation of the effect of stitching on the delamination resistance of laminated composites subjected to low-velocity impact , 2017 .

[22]  I. Telichev,et al.  Meso-scale modeling of hypervelocity impact damage in composite laminates , 2015 .

[23]  M. Czabaj,et al.  Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite , 2013 .

[24]  B. Liaw,et al.  Effect of lay-up orientation on ballistic impact behaviors of GLARE 5 FML beams , 2013 .

[25]  J. Peirs,et al.  Microstructure of adiabatic shear bands in Ti6Al4V , 2013 .

[26]  R. Alderliesten,et al.  Applicability of AZ31B-H24 magnesium in Fibre Metal Laminates – An experimental impact research , 2012 .

[27]  Xue Xiwu Numerical simulation of damage in fiber reinforced composite laminates under high velocity impact , 2012 .

[28]  H. Nakatani,et al.  Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact , 2011 .

[29]  M. S. Fatt,et al.  Rate‐dependent constitutive equations for carbon fiber‐reinforced epoxy , 2006 .

[30]  Wesley J. Cantwell,et al.  The impact resistance of polypropylene-based fibre-metal laminates , 2006 .

[31]  Donald M. Blackketter,et al.  Modeling Damage in a Plain Weave Fabric-Reinforced Composite Material , 1993 .