Combinatorial assembly of developmental stage-specific enhancers controls gene expression programs during human erythropoiesis.

Gene-distal enhancers are critical for tissue-specific gene expression, but their genomic determinants within a specific lineage at different stages of development are unknown. Here we profile chromatin state maps, transcription factor occupancy, and gene expression profiles during human erythroid development at fetal and adult stages. Comparative analyses of human erythropoiesis identify developmental stage-specific enhancers as primary determinants of stage-specific gene expression programs. We find that erythroid master regulators GATA1 and TAL1 act cooperatively within active enhancers but confer little predictive value for stage specificity. Instead, a set of stage-specific coregulators collaborates with master regulators and contributes to differential gene expression. We further identify and validate IRF2, IRF6, and MYB as effectors of an adult-stage expression program. Thus, the combinatorial assembly of lineage-specific master regulators and transcriptional coregulators within developmental stage-specific enhancers determines gene expression programs and temporal regulation of transcriptional networks in a mammalian genome.

[1]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[2]  G. Anderson,et al.  Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c‐Myb , 2003, The EMBO journal.

[3]  S. Swerdlow,et al.  A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis , 1991, Cell.

[4]  Kim Si,et al.  Transcriptional control of erythropoiesis: emerging mechanisms and principles. , 2007 .

[5]  David A. Orlando,et al.  Master Transcription Factors Determine Cell-Type-Specific Responses to TGF-β Signaling , 2011, Cell.

[6]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[7]  S. S. Ajay,et al.  Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. , 2011, Blood.

[8]  S. Goodbourn,et al.  Identification of novel co-repressor molecules for Interferon Regulatory Factor-2. , 2003, Nucleic acids research.

[9]  S. Orkin,et al.  Transcriptional regulation of erythropoiesis: an affair involving multiple partners , 2002, Oncogene.

[10]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[11]  H. Mikkola,et al.  The first trimester human placenta is a site for terminal maturation of primitive erythroid cells. , 2010, Blood.

[12]  Francesca Chiaromonte,et al.  Erythroid GATA 1 function revealed by genome-wide analysis of transcription factor occupancy , histone modifications , and mRNA expression , 2009 .

[13]  K. McGrath,et al.  Ontogeny of erythropoiesis in the mammalian embryo. , 2008, Current topics in developmental biology.

[14]  J. Hirschhorn,et al.  Supporting Online Material Materials and Methods Figs. S1 to S10 Tables S1 to S7 References Human Fetal Hemoglobin Expression Is Regulated by the Developmental Stage-specific Repressor Bcl11a , 2022 .

[15]  S. Orkin,et al.  Transcriptional silencing of {gamma}-globin by BCL11A involves long-range interactions and cooperation with SOX6. , 2010, Genes & development.

[16]  Nathaniel D. Heintzman,et al.  Histone modifications at human enhancers reflect global cell-type-specific gene expression , 2009, Nature.

[17]  T. Enver,et al.  Forcing cells to change lineages , 2009, Nature.

[18]  Patrice M. Milos,et al.  Single-molecule sequencing: sequence methods to enable accurate quantitation. , 2010, Methods in enzymology.

[19]  Eric S. Lander,et al.  Comparative Epigenomic Analysis of Murine and Human Adipogenesis , 2010, Cell.

[20]  T. Taniguchi,et al.  Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development , 1993, Cell.

[21]  G. Stamatoyannopoulos,et al.  Evidence that DNase I hypersensitive site 5 of the human beta-globin locus control region functions as a chromosomal insulator in transgenic mice. , 2002, Nucleic Acids Research.

[22]  Jeffrey C. Murray,et al.  Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes , 2002, Nature Genetics.

[23]  V. Corces,et al.  CTCF: Master Weaver of the Genome , 2009, Cell.

[24]  T. Taniguchi,et al.  Absence of the type I IFN system in EC cells: Transcriptional activator (IRF-1) and repressor (IRF-2) genes are developmentally regulated , 1990, Cell.

[25]  A. Visel,et al.  ChIP-Seq identification of weakly conserved heart enhancers , 2010, Nature Genetics.

[26]  George Q. Daley,et al.  Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs during Differentiation and Regeneration , 2011, Cell.

[27]  Cong Peng,et al.  Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing , 2011, Science.

[28]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[29]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[30]  James A. Cuff,et al.  A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells , 2006, Cell.

[31]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.

[32]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[33]  T. Mak,et al.  Deficiency in the Transcription Factor Interferon Regulatory Factor (Irf)-2 Leads to Severely Compromised Development of Natural Killer and T Helper Type 1 Cells , 2000, The Journal of experimental medicine.

[34]  S. Orkin,et al.  Advances in the understanding of haemoglobin switching , 2010, British journal of haematology.

[35]  A. West,et al.  Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. , 2001, Science.

[36]  George Q. Daley,et al.  Lineage Regulators Direct BMP and Wnt Pathways to Cell-Specific Programs During Differentiation and Regeneration, , 2011 .

[37]  J. Ragoussis,et al.  Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. , 2010, Immunity.

[38]  E. Coccia,et al.  Interferon regulatory factor-2 drives megakaryocytic differentiation. , 2004, The Biochemical journal.

[39]  S. Muljo,et al.  Lin28b Reprograms Adult Bone Marrow Hematopoietic Progenitors to Mediate Fetal-Like Lymphopoiesis , 2012, Science.

[40]  Shane C. Dillon,et al.  The landscape of histone modifications across 1% of the human genome in five human cell lines. , 2007, Genome research.

[41]  W. Ouwehand,et al.  Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators , 2011, Developmental cell.

[42]  Paul Tempst,et al.  Erythroid transcription factor NF-E2 is a haematopoietic-specific basic–leucine zipper protein , 1993, Nature.

[43]  Shamit Soneji,et al.  Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. , 2010, Genome research.

[44]  K. Honda,et al.  Homeostatic erythropoiesis by the transcription factor IRF2 through attenuation of type I interferon signaling. , 2008, Experimental hematology.

[45]  J. Zeitlinger,et al.  Polycomb complexes repress developmental regulators in murine embryonic stem cells , 2006, Nature.

[46]  I. Dusanter-Fourt,et al.  IFN Regulatory Factor-2 Cooperates with STAT1 to Regulate Transporter Associated with Antigen Processing-1 Promoter Activity1 , 2005, The Journal of Immunology.

[47]  M. Groudine,et al.  Functional and Mechanistic Diversity of Distal Transcription Enhancers , 2011, Cell.

[48]  Ernest Fraenkel,et al.  Insights into GATA-1-mediated gene activation versus repression via genome-wide chromatin occupancy analysis. , 2009, Molecular cell.

[49]  E. Bresnick,et al.  Transcriptional control of erythropoiesis: emerging mechanisms and principles , 2007, Oncogene.

[50]  A. Migliaccio,et al.  Erythroid cells in vitro: from developmental biology to blood transfusion products , 2009, Current opinion in hematology.

[51]  E. Lander,et al.  MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13 , 2011, Proceedings of the National Academy of Sciences.

[52]  Shane J. Neph,et al.  An expansive human regulatory lexicon encoded in transcription factor footprints , 2012, Nature.

[53]  Ryan A. Flynn,et al.  A unique chromatin signature uncovers early developmental enhancers in humans , 2011, Nature.

[54]  Xiangdong Fang,et al.  Locus control regions. , 2002, Blood.

[55]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[56]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[57]  L. Zon,et al.  Hematopoiesis: An Evolving Paradigm for Stem Cell Biology , 2008, Cell.

[58]  S. Orkin,et al.  METHOD Open Access , 2014 .

[59]  Jonghwan Kim,et al.  Use of in vivo biotinylation to study protein–protein and protein–DNA interactions in mouse embryonic stem cells , 2009, Nature Protocols.

[60]  Henriette O'Geen,et al.  Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy. , 2009, Molecular cell.