Fly visual pigments difference in visual pigments of blowfly and dronefly peripheral retinula cells

SummaryThe visual pigments of peripheral retinula cells in fly eyes have been investigated by microspectrophotometry in vivo. Since flies have a pupil mechanism (Kirschfeld and Franceschini, 1969) which may invalidate the visual pigment measurements, the technique has been applied to the pupil-less mutant chalky of the blowflyCalliphora erythrocephala. It proves that the data acquired previously from wild type blowflies with the in vivo method (Stavenga et al., 1973) are indeed reliable.Blowfly peripheral retinula cells contain a blue-green absorbing rhodopsin. P495, which is photo-interconvertible with a yellow absorbing metarhodopsin M 580. The transformation of rhodopsin into metarhodopsin occurs within milliseconds.Peripheral retinula cells of wild type droneflies contain a rhodopsin P460 and a metarhodopsin M 550. Both blowfly and dronefly belong to the suborder of Brachycera and both have a strongly bathochromic shifted metarhodopsin; yet, the characteristics of their visual pigments appear to be quite distinct.

[1]  Marianne Drrscheidt-Kfer Die Empfindlichkeit einzelner Photorezeptoren im Komplexauge vonCalliphora erythrocephala@@@The sensitivity of single visual receptors in the compound eye of the blowflyCalliphora erythrocephala , 1972 .

[2]  W. Pak,et al.  Drosophila rhodopsin: photochemistry, extraction and differences in the norp AP12 phototransduction mutant. , 1974, Biochemical and biophysical research communications.

[3]  D. Stavenga,et al.  Photopigment conversions expressed in pupil mechanism of blowfly visual sense cells , 1975, Nature.

[4]  D. Stavenga,et al.  On dispersion in visual photoreceptors , 1975, Vision Research.

[5]  G. Horridge,et al.  Visual pigment spectra from sensitivity measurements after chromatic adaptation of single dronefly retinula cells , 1977, Journal of comparative physiology.

[6]  J. Schwemer,et al.  Three visual pigments inDeilephila elpenor (Lepidoptera, Sphingidae) , 1973, Journal of comparative physiology.

[7]  D. Stavenga Refractive index of fly rhabdomeres , 1974, Journal of comparative physiology.

[8]  G A Horridge,et al.  Fly photoreceptors - II. Spectral and polarized light sensitivity in the drone fly Eristalis , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[9]  K. Hamdorf,et al.  Veränderung der Lichtabsorption im Facettenauge bei Belichtung , 2004, Zeitschrift für vergleichende Physiologie.

[10]  G. Horridge,et al.  Afterpotentials in dronefly retinula cells , 2004, Journal of comparative physiology.

[11]  N. Franceschini,et al.  Le contrôle automatique du flux lumineux dans l'oeil composé des Diptères , 1976, Biological Cybernetics.

[12]  D. G. Stavenga,et al.  Rhodopsin Processes and the Function of the Pupil Mechanism in Flies , 1973 .

[13]  K. Hamdorf,et al.  Photoregeneration and Sensitivity Control of Photoreceptors of Invertebrates , 1973 .

[14]  B. Thorell,et al.  Microspectrophotometry of single rhabdomeres in the insect eye. , 1966, Experimental cell research.

[15]  Richard H. White,et al.  Rhodopsin of the Larval Mosquito , 1972, The Journal of general physiology.

[16]  P. Liebman Microspectrophotometry of Photoreceptors , 1972 .

[17]  T. Goldsmith The Natural History of Invertebrate Visual Pigments , 1972 .

[18]  K. Hamdorf,et al.  Visual sensitivity and the variation of total photopigment content in the Blowfly photoreceptor membrane , 1976, Journal of comparative physiology.

[19]  Doekele G. Stavenga,et al.  A.6 Optical Qualities of the Fly Eye — An Approach from the Side of Geometrical, Physical and Waveguide Optics , 1975 .

[20]  G. Wald Visual Pigments and Photoreceptor Physiology , 1973 .

[21]  K. Hamdorf Primärprozesse beim Sehen der Wirbellosen , 1975 .

[22]  A. Snyder,et al.  Spectral sensitivity of dipteran retinula cells , 1973, Journal of comparative physiology.

[23]  T. Goldsmith,et al.  Microspectrophotometry of the visual pigment of the spider crab Libinia emarginata , 1969, Zeitschrift für vergleichende Physiologie.

[24]  J. Schwemer Der Sehfarbstoff von Eledone moschata und seine Umsetzungen in der lebenden Netzhaut , 1969, Zeitschrift für vergleichende Physiologie.

[25]  G. Horridge,et al.  Fly photoreceptors I. Physical separation of two visual pigments in Calliphora retinula cells 1-6 , 1975, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[26]  N. Franceschini,et al.  Les phénomènes de pseudopupille dans l'œil composé deDrosophila , 1971, Kybernetik.

[27]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[28]  Lewis G. Bishop,et al.  An ultraviolet photoreceptor in a Dipteran compound eye , 1974, Journal of comparative physiology.

[29]  K. Kirschfeld,et al.  Ein Mechanismus zur Steuerung des Lichtflusses in den Rhabdomeren des Komplexauges von Musca , 1969, Kybernetik.

[30]  G. Rosner Adaptation und Photoregeneration im Fliegenauge , 2005, Journal of comparative physiology.

[31]  D. Stavenga DERIVATION OF PHOTOCHROME ABSORPTION SPECTRA FROM ABSORBANCE DIFFERENCE MEASUREMENTS , 1975, Photochemistry and photobiology.

[32]  K. Kirschfeld,et al.  Absorbtion properties of photopigments in single rods, cones and rhabdomeres , 1969 .

[33]  Jaroslav Král,et al.  A note on grammars with regular restrictions , 1973, Kybernetika.

[34]  T. Yoshizawa The Behaviour of Visual Pigments at Low Temperatures , 1972 .

[35]  W. Harris,et al.  Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.

[36]  N. Franceschini,et al.  Pupil and Pseudopupil in the Compound Eye of Drosophila , 1972 .

[37]  K. Hamdorf,et al.  Beschleunigung der „Dunkeladaptation“ eines UV-Rezeptors durch sichtbare Strahlung , 1971, Zeitschrift für vergleichende Physiologie.