Fitting Voronoi Diagrams to Planar Tesselations

Given a tesselation of the plane, defined by a planar straight-line graph G, we want to find a minimal set S of points in the plane, such that the Voronoi diagram associated with S ‘fits’ G. This is the Generalized Inverse Voronoi Problem (GIVP), defined in [12] and rediscovered recently in [3]. Here we give an algorithm that solves this problem with a number of points that is linear in the size of G, assuming that the smallest angle in G is constant.

[1]  James E Falk,et al.  Robust Separation of Multiple Sets. , 2001, Nonlinear analysis, theory, methods & applications.

[2]  Carlo Ratti,et al.  Approximating Shortest Paths in Spatial Social Networks , 2012, 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing.

[3]  Franz Aurenhammer,et al.  Recognising Polytopical Cell Complexes and Constructing Projection Polyhedra , 1987, J. Symb. Comput..

[4]  Sandip Banerjee,et al.  On the Construction of a Generalized Voronoi Inverse of a Rectangular Tessellation , 2012, 2012 Ninth International Symposium on Voronoi Diagrams in Science and Engineering.

[5]  Dannier Trinchet Almaguer,et al.  Algoritmo para solucionar el problema inverso generalizado de Voronoi , 2007 .

[6]  Christian Sommer,et al.  Approximate shortest path and distance queries in networks , 2010 .

[7]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[8]  David Hartvigsen,et al.  Recognizing Voronoi Diagrams with Linear Programming , 1992, INFORMS J. Comput..

[9]  Ethan D. Bolker,et al.  Recognizing Dirichlet tessellations , 1985 .

[10]  Jian Pei,et al.  A brief survey on anonymization techniques for privacy preserving publishing of social network data , 2008, SKDD.

[11]  Cheng Li,et al.  Inverting Dirichlet Tessellations , 2003, Comput. J..

[12]  Hebert Pérez-Rosés,et al.  Image Processing using Voronoi diagrams , 2007, IPCV.

[13]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[14]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.