Preconditioned methods for simulations of low speed compressible flows

A time-derivative preconditioned system of equations suitable for the numerical simulation of inviscid compressible flow at low speeds is formulated. The preconditioned system of equations are hyperbolic in time and remain well-conditioned in the incompressible limit. The preconditioning formulation is easily generalized to multicomponent/multiphase mixtures. When applying conservative methods to multicomponent flows with sharp fluid interfaces, nonphysical solution behavior is observed. This stimulated the authors to develop an alternative solution method based on the nonconservative form of the equations which does not generate the aforementioned nonphysical behavior. Before the results of the application of the nonconservative method to multicomponent flow problems is reported, the accuracy of the method on single component flows will be demonstrated. In this report a series of steady and unsteady inviscid flow problems are simulated using the nonconservative method and a well-known conservative scheme. It is demonstrated that the nonconservative method is both accurate and robust for smooth low speed flows, in comparison to its conservative counterpart.

[1]  Philip L. Roe,et al.  Characteristic time-stepping or local preconditioning of the Euler equations , 1991 .

[2]  A. J. Baker Numerical methods for the computation of inviscid transonic flows with shock waves, notes on numerical fluid mechanics: Vol, 3, A. Rizzi and H. Viviand, eds. , 1981 .

[3]  C. L. Merkle,et al.  The application of preconditioning in viscous flows , 1993 .

[4]  H. Baum,et al.  The Equations of Motion for Thermally Driven, Buoyant Flows. , 1978, Journal of research of the National Bureau of Standards.

[5]  Alain Lerat,et al.  Efficient solution of the steady Euler equations with a centered implicit method , 1988 .

[6]  P. Lax,et al.  Systems of conservation laws , 1960 .

[7]  R. Abgrall How to Prevent Pressure Oscillations in Multicomponent Flow Calculations , 1996 .

[8]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[9]  E. Venkatapathy,et al.  Multi-dimensional formulation of CSCM - An upwind flux difference eigenvector split method for the compressible Navier-Stokes equations , 1983 .

[10]  Bertil Gustafsson,et al.  A numerical method for incompressible and compressible flow problems with smooth solutions , 1986 .

[11]  M. Hafez,et al.  Incompressible Computational Fluid Dynamics: Numerical Solution of the Incompressible Navier-Stokes Equations in Primitive Variables on Unstaggered Grids , 1991 .

[12]  E. Turkel,et al.  Preconditioned methods for solving the incompressible low speed compressible equations , 1987 .

[13]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[14]  Smadar Karni,et al.  Hybrid Multifluid Algorithms , 1996, SIAM J. Sci. Comput..

[15]  H. Mcdonald,et al.  A low mach number Euler formulation and application to time-iterative LBI schemes , 1983 .

[16]  Luca d'Agostino,et al.  Thermal Cavitation Experiments on a NACA 0015 Hydrofoil , 2006 .

[17]  Patrick Jenny,et al.  Correction of Conservative Euler Solvers for Gas Mixtures , 1997 .

[18]  Rémi Abgrall,et al.  Computations of compressible multifluids , 2001 .

[19]  J. Housman,et al.  Time -derivative preconditioning method for multicomponent flow , 2007 .

[20]  Charles Merkle,et al.  Time-accurate unsteady incompressible flow algorithms based on artificial compressibility , 1987 .

[21]  Arthur Rizzi,et al.  Numerical methods for the computation of inviscid transonic flkows with shock waves , 1981 .

[22]  Stuart E. Rogers,et al.  Numerical solution of the incompressible Navier-Stokes equations. Ph.D. Thesis - Stanford Univ., Mar. 1989 , 1990 .

[23]  Jeffrey A. Housman,et al.  High-fidelity simulations of unsteady flow through turbopumps and flowliners , 2008 .

[24]  Smadar Karni,et al.  Multicomponent Flow Calculations by a Consistent Primitive Algorithm , 1994 .

[25]  Thomas H. Pulliam,et al.  Implementation of Preconditioned Dual-Time Procedures in OVERFLOW , 2003 .

[26]  D. Durran Numerical Methods for Fluid Dynamics , 2010 .

[27]  Gino Moretti,et al.  The λ-scheme , 1979 .

[28]  M. Hafez On the Incompressible Limit of Compressible Fluid Flow , 2001 .

[29]  Jacques Periaux,et al.  Computational Fluid Dynamics for the 21st Century , 2001 .

[30]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[31]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .