A consistent co‐rotational formulation for shells using the constant stress/constant moment triangle

The facet-shell formulation involves the combination of the constant-strain membrane triangle with a constant-curvature bending triangle. The paper describes a technique whereby this facet-formulation is extended to handle geometric non-linearity by means of a co-rotational procedure. Emphasis is placed on the derivation of a technique that is increment-independent with both the internal force vector and tangent stiffness matrix being derived from the «total strain measures» in a «consistent manner».

[1]  M. Turner Stiffness and Deflection Analysis of Complex Structures , 1956 .

[2]  R. H. Mallett,et al.  Finite Element Analysis of Nonlinear Structures , 1968 .

[3]  L. R. Herrmann,et al.  A finite-element analysis for thin shells. , 1968 .

[4]  D. Krajcinovic,et al.  Stability of straight bars subjected to repeated impulsive compression. , 1968 .

[5]  Gerald Wempner,et al.  Finite elements, finite rotations and small strains of flexible shells , 1969 .

[6]  L S D Morley,et al.  The constant-moment plate-bending element , 1971 .

[7]  D J Dawe,et al.  Shell analysis using a simple facet element , 1972 .

[8]  B. J. Hsieh,et al.  Non-Linear Transient Finite Element Analysis with Convected Co--ordinates , 1973 .

[9]  Aslam Kassimali,et al.  Large deformations of framed structures under static and dynamic loads , 1976 .

[10]  T. Belytschko,et al.  Large displacement, transient analysis of space frames , 1977 .

[11]  P. G. Bergan,et al.  Nonlinear analysis of free-form shells by flat finite elements , 1978 .

[12]  Chen Kuo-Kuang,et al.  A triangular plate finite element for large-displacement elastic-plastic analysis of automobile structural components , 1979 .

[13]  D. W. Scharpf,et al.  Finite element method — the natural approach , 1979 .

[14]  C. Chon,et al.  On the tangent stiffness matrix in a convected coordinate system , 1980 .

[15]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[16]  J. Argyris An excursion into large rotations , 1982 .

[17]  Large Deflection of a Fluid-Filled Spherical Shell Under a Point Load , 1982 .

[18]  A shape function routine for the constant moment triangular plate bending element , 1984 .

[19]  C. Rankin,et al.  An element independent corotational procedure for the treatment of large rotations , 1986 .

[20]  Hsiao Kuo-Mo,et al.  Nonlinear analysis of general shell structures by flat triangular shell element , 1987 .

[21]  Hsiao Kuo-Mo,et al.  A corotational procedure that handles large rotations of spatial beam structures , 1987 .

[22]  C. Rankin,et al.  THE USE OF PROJECTORS TO IMPROVE FINITE ELEMENT PERFORMANCE , 1988 .

[23]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[24]  M. A. Crisfield,et al.  Co-Rotational Beam Elements for Two- and Three-Dimensional Non-Linear Analysis , 1990 .

[25]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .