The function of alpha-crystallin in vision.

The alpha-crystallins account for approximately one-third of the total soluble protein in the lens, contributing to its refractive power. In addition, alpha-crystallin also has a chaperone-like function and thus can bind unfolding lens proteins. Alpha B-crystallin is also found outside the lens, having an extensive tissue distribution. It is over-expressed in response to stresses of all kinds, where it is thought to serve a general protective function. Recently, it has been shown in humans that naturally occurring point mutations in the alpha-crystallins result in a deficit in chaperone-like function, and cause cataracts as well as a desmin-related myopathy. This review summarizes much of the past and current knowledge concerning the structure and functions of alpha-crystallin.

[1]  H. Mchaourab,et al.  Folding pattern of the α-crystallin domain in αA-crystallin determined by site-directed spin labeling , 1999 .

[2]  John I. Clark,et al.  The Cardiomyopathy and Lens Cataract Mutation in αB-crystallin Alters Its Protein Structure, Chaperone Activity, and Interaction with Intermediate Filaments in Vitro * , 1999, The Journal of Biological Chemistry.

[3]  T. Ramakrishna,et al.  Structural and Functional Consequences of the Mutation of a Conserved Arginine Residue in αA and αB Crystallins* , 1999, The Journal of Biological Chemistry.

[4]  P. Stewart,et al.  Mutation R120G in alphaB-crystallin, which is linked to a desmin-related myopathy, results in an irregular structure and defective chaperone-like function. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Stewart,et al.  Lens α-crystallin: Function and structure , 1999, Eye.

[6]  P. Muchowski,et al.  AlphaB-crystallin selectively targets intermediate filament proteins during thermal stress. , 1999, Investigative ophthalmology & visual science.

[7]  W. Schaper,et al.  Binding of the stress protein alpha B-crystallin to cardiac myofibrils correlates with the degree of myocardial damage during ischemia/reperfusion in vivo. , 1999, Journal of molecular and cellular cardiology.

[8]  B. Matsumoto,et al.  Ectopic expression of alpha B-crystallin in Chinese hamster ovary cells suggests a nuclear role for this protein. , 1999, European journal of cell biology.

[9]  B. Derham,et al.  α-Crystallin as a molecular chaperone , 1999, Progress in Retinal and Eye Research.

[10]  M. Wax,et al.  Autoantibodies to small heat shock proteins in glaucoma. , 1998, Investigative ophthalmology & visual science.

[11]  M. Prevost,et al.  A missense mutation in the αB-crystallin chaperone gene causes a desmin-related myopathy , 1998, Nature Genetics.

[12]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[13]  T. Aerts,et al.  Quaternary structure of bovine α-crystallin: influence of temperature , 1998 .

[14]  W. W. Jong,et al.  Mutations and modifications support a ‘pitted-flexiball’ model for α-crystallin , 1998 .

[15]  J. Carver,et al.  NMR spectroscopy of α-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins , 1998 .

[16]  J. Koretz,et al.  Environmental factors influencing the chaperone-like activity of α-crystallin , 1998 .

[17]  A. Tardieu,et al.  alpha-Crystallin quaternary structure and interactive properties control eye lens transparency. , 1998, International journal of biological macromolecules.

[18]  M. Malfois,et al.  alpha-Crystallin C-terminal domain: on the track of an Ig fold. , 1998, International journal of biological macromolecules.

[19]  J. Piatigorsky,et al.  Gene sharing in lens and cornea: facts and implications , 1998, Progress in Retinal and Eye Research.

[20]  P. Stewart,et al.  The small heat-shock protein, αb-crystallin, has a variable quaternary structure , 1998 .

[21]  P. Kramer,et al.  Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. , 1998, Human molecular genetics.

[22]  J. Polansky,et al.  Localization of the stress proteins alpha B-crystallin and trabecular meshwork inducible glucocorticoid response protein in normal and glaucomatous trabecular meshwork. , 1998, Investigative ophthalmology & visual science.

[23]  L. Brunton,et al.  Small heat shock proteins and protection against ischemic injury in cardiac myocytes. , 1997, Circulation.

[24]  M. Bova,et al.  Subunit Exchange of αA-Crystallin* , 1997, The Journal of Biological Chemistry.

[25]  R. Klemenz,et al.  Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. , 1997, Circulation.

[26]  S. N. Murthy,et al.  Hierarchy of lens proteins requiring protection against heat-induced precipitation by the alpha crystallin chaperone. , 1997, Experimental eye research.

[27]  Ellis Rj Do molecular chaperones have to be proteins , 1997 .

[28]  E. Wawrousek,et al.  Targeted disruption of the mouse alpha A-crystallin gene induces cataract and cytoplasmic inclusion bodies containing the small heat shock protein alpha B-crystallin. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Garrett J. Lee,et al.  A small heat shock protein stably binds heat‐denatured model substrates and can maintain a substrate in a folding‐competent state , 1997, The EMBO journal.

[30]  M. Gaestel,et al.  Binding of non‐native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation , 1997, The EMBO journal.

[31]  P. Russell,et al.  Human and monkey trabecular meshwork accumulate alpha B-crystallin in response to heat shock and oxidative stress. , 1996, Investigative ophthalmology & visual science.

[32]  E. Lütjen-Drecoll,et al.  alpha B-crystallin in the primate ciliary muscle and trabecular meshwork. , 1996, European journal of cell biology.

[33]  P. Overbeek,et al.  Differential expression of alpha A- and alpha B-crystallin during murine ocular development. , 1996, Investigative ophthalmology & visual science.

[34]  J. Buchner Supervising the fold: functional principles of molecular chaperones , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[35]  J. Horwitz,et al.  Evidence that α-crystallin prevents non-specific protein aggregation in the intact eye lens , 1995 .

[36]  B. Groth-Vasselli,et al.  Computer-generated model of the quaternary structure of alpha crystallin in the lens. , 1995, Experimental eye research.

[37]  M. Tamai,et al.  A transient expression of alpha B-crystallin in the developing rat retinal pigment epithelium. , 1994, Investigative ophthalmology & visual science.

[38]  W. W. Jong,et al.  Structure and modifications of the junior chaperone alpha-crystallin. From lens transparency to molecular pathology. , 1994, European journal of biochemistry.

[39]  J. Carver,et al.  A possible chaperone-like quaternary structure for alpha-crystallin. , 1994, Experimental eye research.

[40]  R. Aebersold,et al.  Alpha A- and alpha B-crystallin in the retina. Association with the post-Golgi compartment of frog retinal photoreceptors. , 1994, The Journal of biological chemistry.

[41]  G. Wistow Possible tetramer-based quaternary structure for alpha-crystallins and small heat shock proteins. , 1993, Experimental eye research.

[42]  V. Renugopalakrishnan,et al.  Estimation of the secondary structure and conformation of bovine lens crystallins by infrared spectroscopy: quantitative analysis and resolution by Fourier self-deconvolution and curve fit. , 1993, Biochimica et biophysica acta.

[43]  M. Gaestel,et al.  Small heat shock proteins are molecular chaperones. , 1993, The Journal of biological chemistry.

[44]  S. Bhat,et al.  alpha A-crystallin is expressed in non-ocular tissues. , 1992, The Journal of biological chemistry.

[45]  J. Horwitz Alpha-crystallin can function as a molecular chaperone. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[46]  R. Mayer,et al.  αB crystallin expression in nonlenticular tissues and selective presence in ubiquitinated inclusion bodies in human disease , 1992, The Journal of pathology.

[47]  K. Kato,et al.  Immunoreactive alpha A crystallin in rat non-lenticular tissues detected with a sensitive immunoassay method. , 1991, Biochimica et biophysica acta.

[48]  R. Schäfer,et al.  Alpha B-crystallin is a small heat shock protein. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  R. Siezen,et al.  A dynamic quaternary structure of bovine alpha-crystallin as indicated from intermolecular exchange of subunits. , 1990, Biochemistry.

[50]  T. Iwaki,et al.  αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain , 1989, Cell.

[51]  J. Piatigorsky,et al.  Expression of the murine alpha B-crystallin gene is not restricted to the lens , 1989, Molecular and cellular biology.

[52]  S. Bhat,et al.  αB subunit of lens-specific protein α-crystallin is present in other ocular and non-ocular tissues , 1989 .

[53]  G. Lewis,et al.  An immunocytochemical comparison of Müller cells and astrocytes in the cat retina. , 1988, Experimental eye research.

[54]  J. Koretz,et al.  A possible structure for α‐crystallin , 1987 .

[55]  A. Tardieu Calf lens ?-crystallin quaternary structure *1A three-layer tetrahedral model , 1986 .

[56]  L. Fox,et al.  Antiserum to lens antigens immunostains Müller glia cells in the neural retina. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[57]  P. Argos,et al.  Structural homology of lens crystallins. III. Secondary structure estimation from circular dichroism and prediction from amino acid sequences. , 1983, Biochimica et biophysica acta.

[58]  B. Chakrabarti,et al.  Spectroscopic investigations of bovine lens crystallins. 1. Circular dichroism and intrinsic fluorescence. , 1982, Biochemistry.

[59]  J. Bindels,et al.  A Model for the Architecture of α-Crystallin , 1979 .

[60]  J. Horwitz Some properties of the low molecular weight alpha-crystallin from normal human lens: comparison with bovine lens. , 1976, Experimental eye research.

[61]  A. Spector,et al.  Circular dichroism and optical rotatory dispersion of the aggregates of purified polypeptides of alpha-crystallin. , 1974, Experimental eye research.

[62]  London,et al.  Biochemistry of the Eye , 1971 .

[63]  J. Bajramovic,et al.  Chapter 30 The small heat shock protein αB-crystallin as key autoantigen in multiple sclerosis , 1998 .

[64]  M. Bova,et al.  Lens alpha-crystallin: chaperone-like properties. , 1998, Methods in enzymology.

[65]  W. D. de Jong,et al.  αB-crystallin and hsp25 in neonatal cardiac cells — differences in cellular localization under stress conditions , 1998 .

[66]  J. Piatigorsky,et al.  Expression of the α‐Crystallin/Small Heat‐Shock Protein/Molecular Chaperone Genes in the Lens and other Tissues , 1994 .

[67]  L. Takemoto,et al.  Characterization of the alpha-gamma and alpha-beta complex: evidence for an in vivo functional role of alpha-crystallin as a molecular chaperone. , 1994, Experimental eye research.

[68]  C. Voorter,et al.  Distribution of αB-crystallin in the anterior segment of primate and bovine eyes , 1993 .

[69]  J. Leunissen,et al.  Evolution of the alpha-crystallin/small heat-shock protein family. , 1993, Molecular biology and evolution.

[70]  J. Horwitz,et al.  Lens and Cataract , 1992, All about Your Eyes, Second Edition, revised and updated.

[71]  T. Wisniewski,et al.  Accumulation of alpha B-crystallin in central nervous system glia and neurons in pathologic conditions. , 1992, The American journal of pathology.

[72]  P. Fitzgerald,et al.  Ultrastructural localization of alpha A-crystallin to the bovine lens fiber cell cytoskeleton. , 1991, Current eye research.

[73]  J. Piatigorsky,et al.  Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. , 1988, Annual review of biochemistry.

[74]  J. Alcara Biochemistry of lens plasma membrane and cytoskeleton , 1985 .

[75]  M. Crabbe,et al.  Chapter 3 – The Lens: Development, Proteins, Metabolism and Cataract , 1984 .

[76]  F. Bettelheim,et al.  Effect of change in concentration upon lens turbidity as predicted by the random fluctuation theory. , 1983, Biophysical journal.

[77]  M. Delaye,et al.  Short-range order of crystallin proteins accounts for eye lens transparency , 1983, Nature.

[78]  R. Heyningen Effect of some cyclic hydroxy compounds on the accumulation of ascorbic acid by the rabbit lens in vitro. , 1970 .