Combinatorial Materials Synthesis

Multi-sample concept - the forerunner of combinatorial materials science, Joseph J. Hanak the continuous composition spread approach, R. Bruce van Dover and Lynn Schneemeyer combinatorial approach to ferroelectric/dielectric materials, Hauyee Changand Ichiro Takeuchi parallel synthesis of artificially designed lattices and devices, Mikk Lippmaa, Masashi Kawasaki and Hideomi Koinuma combinatorial synthesis of display phosphors, Ted Sun combinatorial ion synthesis and ion beam analysis ofmaterials libraries, Chang-Ming Chen, Xin-Quan Liu and Min-Qian Li mapping of physical properties - composition phase diagrams of complex materials systems using continuous composition materials chips, Young K. Yoo and Xiao-Dong Xiang temperature-dependent materials research with micromachined array platforms, Steve Semancik X-ray techniques for characterization of combinatorial materials libraries, William Chang high-throughput screening of electrical impedance of functionalmaterials by evanescent microwave probe, Gang Wang and Xiao-Dong Xiang combinatorial computational chemistry, Rodion Belosludov, Seiichi Takami, Momaji Kubo and Akira Miyamoto computational informatics - guided discovery for combinatorial experiments,Krishna Rajan.

[1]  J. M. Serra,et al.  Application of artificial neural networks to combinatorial catalysis: modeling and predicting ODHE catalysts. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[2]  D. Poojary,et al.  Selective oxidation of alcohols by combinatorial catalysis , 2001 .

[3]  W. H. Weinberg,et al.  High-Throughput Synthesis and Screening of Combinatorial Heterogeneous Catalyst Libraries. , 1999, Angewandte Chemie.

[4]  Manfred Baerns,et al.  Experimental equipment for high-throughput synthesis and testing of catalytic materials , 2002 .

[5]  Eric J. Amis,et al.  Combinatorial Materials Science: What’s New Since Edison? , 2002 .

[6]  José M. Serra,et al.  Styrene from toluene by combinatorial catalysis , 2003 .

[7]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.

[8]  Selim M. Senkan,et al.  High-throughput screening of solid-state catalyst libraries , 1998, Nature.

[9]  J. Dahn,et al.  Combinatorial investigations of advanced Li-ion rechargeable battery electrode materials , 2004 .

[10]  Kengo Suzuki,et al.  Rapid evaluation of oxidation catalysis by gas sensor system: total oxidation, oxidative dehydrogenation, and selective oxidation over metal oxide catalysts , 2001 .

[11]  F. Gracia,et al.  Selective combinatorial catalysis; challenges and opportunities: the preferential oxidation of carbon monoxide , 2003 .

[12]  Mar Michael Meier,et al.  Combinatorial and high-throughput approaches in polymer science , 2004 .

[13]  Y. Matsumoto,et al.  Computer design of combinatorial shadow mask for ternary composition spread library , 2004 .

[14]  J. Klein,et al.  Accelerating lead discovery via advanced screening methodologies , 2003 .

[15]  David Smith,et al.  Combinatorial discovery of metal co-catalysts for the carbonylation of phenol , 2003 .

[16]  J. M. Serra,et al.  Discovery of new paraffin isomerization catalysts based on SO42−/ZrO2 and WOx/ZrO2 applying combinatorial techniques , 2003 .

[17]  Wolfgang Strehlau,et al.  Application of a new color detection based method for the fast parallel screening of DeNO(x) catalysts. , 2002, Journal of the American Chemical Society.

[18]  H. Koinuma,et al.  Combinatorial solid-state chemistry of inorganic materials , 2004, Nature materials.

[19]  W. Maier,et al.  Combinatorial and conventional development of novel dehydrogenation catalysts , 2003 .

[20]  Richard Kramer,et al.  Chemometric Techniques For Quantitative Analysis , 1998 .

[21]  J. Moulijn,et al.  Structure/metathesis-activity relations of silica supported molybdenum and tungsten oxide , 1980 .

[22]  Gao,et al.  Identification of a blue photoluminescent composite material from a combinatorial library , 1998, Science.

[23]  Koji Yokota,et al.  The new concept 3-way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst , 1996 .

[24]  Snively,et al.  Chemically sensitive high throughput parallel analysis of solid phase supported library members , 2000, Journal of combinatorial chemistry.

[25]  S. Chattopadhyay,et al.  Combinatorial screening of organic electronic materials: thin film stability , 2004 .

[26]  I. Takeuchi,et al.  Combinatorial Investigation of Spintronic Materials , 2003 .

[27]  K. Beers,et al.  Microchannel confined surface-initiated polymerization , 2005 .

[28]  A new synthetic method for controlled polymerization using a microfluidic system. , 2004, Journal of the American Chemical Society.

[29]  G Oskarsdottir,et al.  Parallel analysis of the reaction products from combinatorial catalyst libraries. , 2001, Angewandte Chemie.

[30]  C. Snively,et al.  A novel reactor system for high throughput catalyst testing under realistic conditions , 2003 .

[31]  P. Jacobs,et al.  Development of a fixed-bed continuous-flow high-throughput reactor for long-chain n-alkane hydroconversion , 2003 .

[32]  Y S Chu,et al.  Novel germanium-based magnetic semiconductors. , 2003, Physical review letters.

[33]  S. Senkan,et al.  Photoionization detection (PID) as a high throughput screening tool in catalysis , 2003 .

[34]  Y. Chu,et al.  Continuous mapping of structure–property relations in Fe1−xNix metallic alloys fabricated by combinatorial synthesis , 2001 .

[35]  M. Schwickardi,et al.  Listening to catalysis - a real time parallel method for high throughput product analysis , 2003 .

[36]  Masashi Kawasaki,et al.  Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide , 2001, Science.

[37]  Y. Yoo,et al.  New Materials for Spintronics , 2003 .

[38]  Edward S. Yeung,et al.  High-Throughput Screening of Heterogeneous Catalysts by Laser-Induced Fluorescence Imaging , 2000 .

[39]  G Oskarsdottir,et al.  Fourier-transform infrared imaging using a rapid-scan spectrometer. , 1999, Optics letters.

[40]  B. Ogunnaike,et al.  Development and optimization of NOx storage and reduction catalysts using statistically guided high-throughput experimentation , 2004 .

[41]  E. McFarland,et al.  Automated electrochemical synthesis and characterization of TiO2 supported Au nanoparticle electrocatalysts , 2004 .

[42]  Radislav A. Potyrailo,et al.  Sensors in Combinatorial Polymer Research , 2004 .

[43]  Venkat Venkatasubramanian,et al.  Catalyst design: knowledge extraction from high-throughput experimentation , 2003 .

[44]  Combinatorial Materials Research in the Polymer Industry: Speed versus Flexibility , 2003 .

[45]  C. Snively,et al.  Multivariate and univariate analysis of infrared imaging data for high-throughput studies of NH3 decomposition and NOx storage and reduction catalysts , 2004 .

[46]  F. Schüth,et al.  Imaging reflection IR spectroscopy as a tool to achieve higher integration for high-throughput experimentation in catalysis research. , 2004, Journal of combinatorial chemistry.

[47]  Hans-Werner Schmidt,et al.  Detection of Catalytic Activity in Combinatorial Libraries of Heterogeneous Catalysts by IR Thermography. , 1998, Angewandte Chemie.

[48]  Jochen A. Lauterbach,et al.  Chemically sensitive parallel analysis of combinatorial catalyst libraries , 2001 .

[49]  José M. Serra,et al.  Development of a low temperature light paraffin isomerization catalysts with improved resistance to water and sulphur by combinatorial methods , 2003 .

[50]  Ichiro Takeuchi,et al.  Quantitative scanning evanescent microwave microscopy and its applications in characterization of functional materials libraries , 2005 .

[51]  Zengin,et al.  High-Throughput Testing of Heterogeneous Catalyst Libraries Using Array Microreactors and Mass Spectrometry. , 1999, Angewandte Chemie.

[52]  Wenhua Zhang,et al.  A new design for high-throughput peel tests: statistical analysis and example , 2005 .

[53]  Reetz,et al.  IR-Thermographic Screening of Thermoneutral or Endothermic Transformations: The Ring-Closing Olefin Metathesis Reaction. , 2000, Angewandte Chemie.

[54]  Chen Gao,et al.  Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system. , 2004, Journal of combinatorial chemistry.

[55]  X. Xiang,et al.  COMBINATORIAL MATERIALS SYNTHESIS AND SCREENING: An Integrated Materials Chip Approach to Discovery and Optimization of Functional Materials , 1999 .

[56]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[57]  Alfred Ludwig,et al.  MEMS tools for combinatorial materials processing and high-throughput characterization , 2004 .

[58]  Alfred J. Crosby,et al.  A multilens measurement platform for high-throughput adhesion measurements , 2005 .

[59]  Masashi Kawasaki,et al.  Rapid construction of a phase diagram of doped Mott insulators with a composition-spread approach , 2000 .

[60]  Hideomi Koinuma,et al.  Quantum functional oxides and combinatorial chemistry , 1998 .

[61]  C. Snively,et al.  High-throughput catalytic science: parallel analysis of transients in catalytic reactions. , 2003, Angewandte Chemie.

[62]  Matthias Otto,et al.  Chemometrics: Statistics and Computer Application in Analytical Chemistry , 1999 .

[63]  Jack F Douglas,et al.  Frontal photopolymerization for microfluidic applications. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[64]  Jennifer S. Holmgren,et al.  Strategies and applications of combinatorial methods and high throughput screening to the discovery of non-noble metal catalyst , 2004 .

[65]  S. Guan,et al.  Application of combinatorial catalysis for the direct amination of benzene to aniline , 2002 .

[66]  A parallel colorimetric method for the rapid discovery and optimization of heterogeneous hydrodesulfurization catalysts. , 2003, Journal of the American Chemical Society.

[67]  Jens Scheidtmann,et al.  Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology , 2001 .

[68]  J. Carson Meredith,et al.  High-Throughput Discovery of Structure−Mechanical Property Relationships for Segmented Poly(urethane−urea)s , 2004 .

[69]  Orschel,et al.  Detection of Reaction Selectivity on Catalyst Libraries by Spatially Resolved Mass Spectrometry. , 1999, Angewandte Chemie.

[70]  I. Takeuchi,et al.  A low-loss composition region identified from a thin-film composition spread of (Ba1−x−ySrxCay)TiO3 , 1999 .

[71]  Y. Yoo,et al.  Continuous Phase Diagramming of Epitaxial Films , 2002 .

[72]  H. Shioyama,et al.  High throughput experiments on methane partial oxidation using molecular oxygen over silica doped with various elements , 2003 .

[73]  James Norman Cawse,et al.  Experimental Design for Combinatorial and High Throughput Materials Development , 2002 .

[74]  Richard E. Cavicchi,et al.  KINETICALLY CONTROLLED CHEMICAL SENSING USING MICROMACHINED STRUCTURES , 1998 .

[75]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[76]  S. Senkan,et al.  Discovery and Optimization of Heterogeneous Catalysts by Using Combinatorial Chemistry. , 1999, Angewandte Chemie.

[77]  O. Wolfbeis,et al.  High-throughput analysis of bulk and contact conductance of polymer layers on electrodes , 2004 .

[78]  P. Claus,et al.  Miniaturization of screening devices for the combinatorial development of heterogeneous catalysts , 2001 .

[79]  M. Baerns,et al.  Application of a genetic algorithm and a neural network for the discovery and optimization of new solid catalytic materials , 2004 .

[80]  Manfred T. Reetz,et al.  A GC-based method for high-throughput screening of enantioselective catalysts , 2001 .

[81]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[82]  M. Wuttig,et al.  Exploration of artificial multiferroic thin-film heterostructures using composition spreads , 2004 .

[83]  L. A. Knauss,et al.  Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads , 2003, Nature materials.

[84]  R. M. Fleming,et al.  Discovery of a useful thin-film dielectric using a composition-spread approach , 1998, Nature.

[85]  L. Harmon,et al.  Experiment planning for combinatorial materials discovery , 2003 .

[86]  G. Jellison,et al.  A laser-deposition approach to compositional-spread discovery of materials on conventional sample sizes , 2004 .

[87]  Ferdi Schüth,et al.  A Multipurpose Parallelized 49-Channel Reactor for the Screening of Catalysts: Methane Oxidation as the Example Reaction , 2001 .

[88]  András Tompos,et al.  Holographic research strategy for catalyst library design: Description of a new powerful optimisation method , 2003 .

[89]  Zhongmin Liu,et al.  Quantified MS analysis applied to combinatorial heterogeneous catalyst libraries. , 2003, Journal of combinatorial chemistry.

[90]  V. Guliants,et al.  High-throughput experimentation in multicomponent bulk mixed metal oxides: Mo-V-Sb-Nb-O system for selective oxidation of propane to acrylic acid , 2002 .

[91]  Joop A. Peters,et al.  High-throughput experimentation as a tool in catalyst design for the reductive amination of benzaldehyde , 2003 .

[92]  C. H. Olk Combinatorial approach to material synthesis and screening of hydrogen storage alloys , 2004 .

[93]  I.E. Maxwell,et al.  High-Throughput Technologies to Enhance Innovation in Catalysis , 2003 .