Numerical resolution of a potential diphasic low Mach number system
暂无分享,去创建一个
[1] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[2] A. Chorin. Numerical solution of the Navier-Stokes equations , 1968 .
[3] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[4] D. Juric,et al. A front-tracking method for the computations of multiphase flow , 2001 .
[5] Stéphane Dellacherie,et al. Numerical Solution of an Ionic Fokker-Planck Equation with Electronic Temperature , 2001, SIAM J. Numer. Anal..
[6] James A. Sethian,et al. THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .
[7] S. Welch,et al. A Volume of Fluid Based Method for Fluid Flows with Phase Change , 2000 .
[8] H. Paillere,et al. Comparison of low Mach number models for natural convection problems , 2000 .
[9] François Alouges,et al. Un procédé de réduction de la diffusion numérique des schémas à différence de flux d'ordre un pour les systèmes hyperboliques non linéaires , 2002 .
[10] S. Zaleski,et al. Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .
[11] P. Smereka,et al. A Remark on Computing Distance Functions , 2000 .
[12] Stéphane Dellacherie. Sur un schéma numérique semi-discret appliqué à un opérateur de Fokker—Planck isotrope , 1999 .
[13] P. Embid,et al. Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .
[14] Stanley Osher,et al. Level Set Methods , 2003 .
[15] Stéphane Dellacherie,et al. Relaxation schemes for the multicomponent Euler system , 2003 .
[16] Bruno Després,et al. Numerical resolution of a two-component compressible fluid model with interfaces , 2007 .
[17] S. Osher,et al. Computing interface motion in compressible gas dynamics , 1992 .
[18] F. Harlow,et al. Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .
[19] P. Raviart,et al. Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.
[20] J. Craggs. Applied Mathematical Sciences , 1973 .
[21] Djamel Lakehal,et al. Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows , 2002 .
[22] Frédéric Lagoutière,et al. Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .
[23] S. Dellacherie. ON A DIPHASIC LOW MACH NUMBER SYSTEM , 2005 .
[24] B. Després,et al. Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .
[25] P. Embid. On the reactive and non-diffusive equations for zero mach number flow , 1989 .
[26] D. Juric,et al. Computations of Boiling Flows , 1998 .
[27] J. Brackbill,et al. A continuum method for modeling surface tension , 1992 .
[28] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[29] G. Tryggvason,et al. A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .
[30] Samuel Kokh. Aspects numeriques et theoriques de la modelisation des ecoulements diphasiques compressibles par des methodes de capture d'interface , 2001 .
[31] J. Marsden,et al. A mathematical introduction to fluid mechanics , 1979 .
[32] Andrew J. Majda,et al. Simplified Equations for Low Mach Number Combustion with Strong Heat Release , 1991 .
[33] Seungwon Shin,et al. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity , 2002 .
[34] G. Sivashinsky,et al. Hydrodynamic theory of flame propagation in an enclosed volume , 1979 .
[35] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables , 1984 .
[36] Grégoire Allaire,et al. A five-equation model for the numerical simulation of interfaces in two-phase flows , 2000 .
[37] Grégoire Allaire,et al. A five-equation model for the simulation of interfaces between compressible fluids , 2002 .
[38] Bruno Després,et al. Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..
[39] S. Osher,et al. A level set approach for computing solutions to incompressible two-phase flow , 1994 .