Numerical resolution of a potential diphasic low Mach number system

We propose a bidimensional algorithm for the numerical discretization of a diphasic low Mach number (DLMN) system in the case of a potential approximation, the extension to the tridimensional geometry being natural. In this algorithm, we capture the interface separating two immiscible fluids on a fixed cartesian mesh with an interface capturing algorithm. This algorithm solves a transport equation applied to an Heaviside function with a non-diffusive scheme i.e. with a scheme diffusing on a number of cells which is independent of the time integration. To take into account the artificial mixture area produced by this numerical diffusion, we have previously extended the DLMN system to the case of a mixture. Numerical results show that the algorithm is accurate and stable since the thickness of the artificial mixture area is always bounded by a constant which is of the order of the cell size, even in the case of important deformations of the interface, and since the numerical solution converges toward a good thermodynamic equilibrium with a decreasing of the entropy.

[1]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[2]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[3]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[4]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[5]  Stéphane Dellacherie,et al.  Numerical Solution of an Ionic Fokker-Planck Equation with Electronic Temperature , 2001, SIAM J. Numer. Anal..

[6]  James A. Sethian,et al.  THE DERIVATION AND NUMERICAL SOLUTION OF THE EQUATIONS FOR ZERO MACH NUMBER COMBUSTION , 1985 .

[7]  S. Welch,et al.  A Volume of Fluid Based Method for Fluid Flows with Phase Change , 2000 .

[8]  H. Paillere,et al.  Comparison of low Mach number models for natural convection problems , 2000 .

[9]  François Alouges,et al.  Un procédé de réduction de la diffusion numérique des schémas à différence de flux d'ordre un pour les systèmes hyperboliques non linéaires , 2002 .

[10]  S. Zaleski,et al.  Volume-of-Fluid Interface Tracking with Smoothed Surface Stress Methods for Three-Dimensional Flows , 1999 .

[11]  P. Smereka,et al.  A Remark on Computing Distance Functions , 2000 .

[12]  Stéphane Dellacherie Sur un schéma numérique semi-discret appliqué à un opérateur de Fokker—Planck isotrope , 1999 .

[13]  P. Embid,et al.  Well-posedness of the nonlinear equations for zero mach number combustion , 1987 .

[14]  Stanley Osher,et al.  Level Set Methods , 2003 .

[15]  Stéphane Dellacherie,et al.  Relaxation schemes for the multicomponent Euler system , 2003 .

[16]  Bruno Després,et al.  Numerical resolution of a two-component compressible fluid model with interfaces , 2007 .

[17]  S. Osher,et al.  Computing interface motion in compressible gas dynamics , 1992 .

[18]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[19]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[20]  J. Craggs Applied Mathematical Sciences , 1973 .

[21]  Djamel Lakehal,et al.  Interface tracking towards the direct simulation of heat and mass transfer in multiphase flows , 2002 .

[22]  Frédéric Lagoutière,et al.  Modelisation mathematique et resolution numerique de problemes de fluides compressibles a plusieurs constituants , 2000 .

[23]  S. Dellacherie ON A DIPHASIC LOW MACH NUMBER SYSTEM , 2005 .

[24]  B. Després,et al.  Un schéma non linéaire anti-dissipatif pour l'équation d'advection linéaire , 1999 .

[25]  P. Embid On the reactive and non-diffusive equations for zero mach number flow , 1989 .

[26]  D. Juric,et al.  Computations of Boiling Flows , 1998 .

[27]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[28]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[29]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[30]  Samuel Kokh Aspects numeriques et theoriques de la modelisation des ecoulements diphasiques compressibles par des methodes de capture d'interface , 2001 .

[31]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[32]  Andrew J. Majda,et al.  Simplified Equations for Low Mach Number Combustion with Strong Heat Release , 1991 .

[33]  Seungwon Shin,et al.  Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity , 2002 .

[34]  G. Sivashinsky,et al.  Hydrodynamic theory of flame propagation in an enclosed volume , 1979 .

[35]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[36]  Grégoire Allaire,et al.  A five-equation model for the numerical simulation of interfaces in two-phase flows , 2000 .

[37]  Grégoire Allaire,et al.  A five-equation model for the simulation of interfaces between compressible fluids , 2002 .

[38]  Bruno Després,et al.  Contact Discontinuity Capturing Schemes for Linear Advection and Compressible Gas Dynamics , 2002, J. Sci. Comput..

[39]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .