Several new regularity criteria for the axisymmetric Navier-Stokes equations with swirl

Abstract In this paper, we consider the axisymmetric Navier–Stokes equations with swirl, and show that the global regularity is ensured if we add some (weighted) integrable conditions on ω θ = ∂ z u r − ∂ r u z , ∂ r u r , ∂ z u z or ∂ r u θ .

[1]  Zujin Zhang On weighted regularity criteria for the axisymmetric Navier-Stokes equations , 2017, Appl. Math. Comput..

[2]  Milan Pokorný,et al.  AXISYMMETRIC FLOW OF NAVIER-STOKES FLUID IN THE WHOLE SPACE WITH NON-ZERO ANGULAR VELOCITY COMPONENT , 2001 .

[3]  Ping Zhang,et al.  Global Axisymmetric Solutions to Three-Dimensional Navier–Stokes System , 2014 .

[4]  Zhen Lei,et al.  A Liouville Theorem for the Axially-symmetric Navier-Stokes Equations , 2010, 1011.5066.

[5]  Jian-Guo Liu,et al.  Characterization and Regularity for Axisymmetric Solenoidal Vector Fields with Application to Navier-Stokes Equation , 2009, SIAM J. Math. Anal..

[6]  Adam Kubica Remarks on regularity criteria for axially symmetric weak solutions to the Navier–Stokes equations , 2012 .

[7]  Vladimir Sverak,et al.  L3,∞-solutions of the Navier-Stokes equations and backward uniqueness , 2003 .

[8]  M. R. Ukhovskii,et al.  Axially symmetric flows of ideal and viscous fluids filling the whole space , 1968 .

[9]  Zujin Zhang Remarks on regularity criteria for the Navier-Stokes equations with axisymmetric data , 2016 .

[10]  Dongho Chae,et al.  Digital Object Identifier (DOI) 10.1007/s002090100317 , 2002 .

[11]  Milan Pokorný,et al.  On Axially Symmetric Flows in $mathbb R^3$ , 1999 .

[12]  Zhen Lei,et al.  Criticality of the Axially Symmetric Navier-Stokes Equations , 2015 .

[13]  V. Sverák,et al.  On the Cauchy Problem for Axi-Symmetric Vortex Rings , 2013, 1301.6317.

[14]  Milan Pokorný A regularity criterion for the angular velocity component in the case of axisymmetric Navier–Stokes equations , 2002 .

[15]  Sadek Gala,et al.  On the regularity criterion of axisymmetric weak solutions to the 3D NavierStokes equations , 2011 .

[16]  Dongyi Wei Regularity Criterion to the axially symmetric Navier-Stokes Equations , 2015 .

[17]  Edriss S. Titi,et al.  Global Regularity Criterion for the 3D Navier–Stokes Equations Involving One Entry of the Velocity Gradient Tensor , 2010, 1005.4463.

[18]  On the regularity criterion for the Navier–Stokes equations involving the diagonal entry of the velocity gradient , 2015 .

[19]  Qionglei Chen,et al.  Regularity criterion of axisymmetric weak solutions to the 3D Navier–Stokes equations , 2007 .

[20]  G. Prodi Un teorema di unicità per le equazioni di Navier-Stokes , 1959 .

[21]  Rej Kreml,et al.  A REGULARITY CRITERION FOR THE ANGULAR VELOCITY COMPONENT IN AXISYMMETRIC NAVIER-STOKES EQUATIONS , 2007 .

[22]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[23]  Hui Chen,et al.  Regularity of 3D axisymmetric Navier-Stokes equations , 2015, 1505.00905.