Quantum McEliece public-key cryptosystem

The McEliece cryptosystem is one of the best-known (classical) public-key cryptosystems, which is based on algebraic coding theory. In this paper, we present a quantum analogue of the classical McEliece cryptosystem. Our quantumMcEliece public-key cryptosystem is based on the theory of stabilizer codes and has the key generation, encryption and decryption algorithms similar to those in the classical McEliece cryptosystem. We present an explicit construction of the quantum McEliece public-key cryptosystem using Calderbank-Shor-Steane codes based on generalized Reed-Solomon codes. We examine the security of our quantum McEliece cryptosystem and compare it with alternative systems.

[1]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[2]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[3]  Bruce Schneier,et al.  Reaction Attacks Against Several Public-Key Cryptosystem , 1997 .

[4]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[5]  V. Sidelnikov,et al.  On insecurity of cryptosystems based on generalized Reed-Solomon codes , 1992 .

[6]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[7]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[8]  Min Liang,et al.  Quantum public-key cryptosystems based on induced trapdoor one-way transformations , 2010, 1012.5249.

[9]  Jacques Stern,et al.  A method for finding codewords of small weight , 1989, Coding Theory and Applications.

[10]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[11]  Matthieu Finiasz,et al.  Security Bounds for the Design of Code-Based Cryptosystems , 2009, ASIACRYPT.

[12]  Martin Rötteler,et al.  Efficient Quantum Circuits for Non-qubit Quantum Error-correcting Codes , 2002 .

[13]  Ernest F. Brickell,et al.  An Observation on the Security of McEliece's Public-Key Cryptosystem , 1988, EUROCRYPT.

[14]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Li Yang A public-key cryptosystem for quantum message transmission , 2005, SPIE/COS Photonics Asia.

[16]  Thomas A. Berson,et al.  Failure of the McEliece Public-Key Cryptosystem Under Message-Resend and Related-Message Attack , 1997, CRYPTO.

[17]  Kazukuni Kobara,et al.  Semantically Secure McEliece Public-Key Cryptosystems-Conversions for McEliece PKC , 2001, Public Key Cryptography.

[18]  Robert H. Deng,et al.  On the equivalence of McEliece's and Niederreiter's public-key cryptosystems , 1994, IEEE Trans. Inf. Theory.

[19]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[20]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[21]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[22]  Raphael Overbeck,et al.  A Summary of McEliece-Type Cryptosystems and their Security , 2007, J. Math. Cryptol..

[23]  Tanja Lange,et al.  Attacking and defending the McEliece cryptosystem , 2008, IACR Cryptol. ePrint Arch..

[24]  F. Gall,et al.  NP-hardness of decoding quantum error-correction codes , 2010, 1009.1319.

[25]  Nicolas Sendrier Code-Based Cryptography , 2011, Encyclopedia of Cryptography and Security.

[26]  Keisuke Tanaka,et al.  Quantum Public-Key Cryptosystems , 2000, CRYPTO.

[27]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[28]  Daniel J. Bernstein,et al.  Grover vs. McEliece , 2010, PQCrypto.

[29]  Bruce Schneier,et al.  Reaction Attacks against several Public-Key Cryptosystems , 1999, ICICS.

[30]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[31]  James L. Massey,et al.  Shift-register synthesis and BCH decoding , 1969, IEEE Trans. Inf. Theory.

[32]  V. Roychowdhury,et al.  Optimal encryption of quantum bits , 2000, quant-ph/0003059.

[33]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[34]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[35]  Florent Chabaud,et al.  On the Security of Some Cryptosystems Based on Error-correcting Codes , 1994, EUROCRYPT.

[36]  R. Cleve,et al.  Efficient computations of encodings for quantum error correction , 1996, quant-ph/9607030.

[37]  Takeshi Koshiba,et al.  Computational Indistinguishability Between Quantum States and Its Cryptographic Application , 2004, Journal of Cryptology.

[38]  Markus Grassl,et al.  Quantum Reed-Solomon Codes , 1999, AAECC.

[39]  Henk Meijer,et al.  Security-related comments regarding McEliece's public-key cryptosystem , 1989, IEEE Trans. Inf. Theory.

[40]  Andris Ambainis,et al.  Private quantum channels , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[41]  Anne Canteaut,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to McEliece’s Cryptosystem and to Narrow-Sense BCH Codes of Length , 1998 .

[42]  F. Chabaud,et al.  A New Algorithm for Finding Minimum-Weight Words in a Linear Code: Application to Primitive Narrow-Sense BCH Codes of Length~511 , 1995 .

[43]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[44]  G. M. Nikolopoulos,et al.  Applications of single-qubit rotations in quantum public-key cryptography , 2008, 0801.2840.

[45]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[46]  Jeffrey S. Leon,et al.  A probabilistic algorithm for computing minimum weights of large error-correcting codes , 1988, IEEE Trans. Inf. Theory.