Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR

Deformable template representations of observed imagery model the variability of target pose via the actions of the matrix Lie groups on rigid templates. In this paper, we study the construction of minimum mean squared error estimators on the special orthogonal group, SO(n), for pose estimation. Due to the nonflat geometry of SO(n), the standard Bayesian formulation of optimal estimators and their characteristics requires modifications. By utilizing Hilbert-Schmidt metric defined on GL(n), a larger group containing SO(n), a mean squared criterion is defined on SO(n). The Hilbert-Schmidt estimate (HSE) is defined to be a minimum mean squared error estimator, restricted to SO(n). The expected error associated with the HSE is shown to be a lower bound, called the Hilbert-Schmidt bound (HSB), on the error incurred by any other estimator. Analysis and algorithms are presented for evaluating the HSE and the HSB in cases of both ground-based and airborne targets.

[1]  R. Tennant Algebra , 1941, Nature.

[2]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[3]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[4]  J. Rissanen A UNIVERSAL PRIOR FOR INTEGERS AND ESTIMATION BY MINIMUM DESCRIPTION LENGTH , 1983 .

[5]  金谷 健一 Group-theoretical methods in image understanding , 1990 .

[6]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[7]  Firooz A. Sadjadi Automatic Object Recognition II , 1991 .

[8]  U. Grenander,et al.  Structural Image Restoration through Deformable Templates , 1991 .

[9]  M I Miller,et al.  Mathematical textbook of deformable neuroanatomies. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[11]  Michael I. Miller,et al.  Implementation of jump-diffusion algorithms for understanding FLIR scenes , 1995, Defense, Security, and Sensing.

[12]  Michael I. Miller,et al.  Conditional-mean estimation via jump-diffusion processes in multiple target tracking/recognition , 1995, IEEE Trans. Signal Process..

[13]  Michael I. Miller,et al.  Hierarchical brain mapping via a generalized Dirichlet solution for mapping brain manifolds , 1995, Optics & Photonics.

[14]  Michael I. Miller,et al.  Multiple target direction of arrival tracking , 1995, IEEE Trans. Signal Process..

[15]  Michael I. Miller,et al.  Differential geometry of the cortical surface , 1995, Optics & Photonics.

[16]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[17]  Joseph A. O'Sullivan,et al.  Automatic target recognition organized via jump-diffusion algorithms , 1997, IEEE Trans. Image Process..

[18]  U. Grenander,et al.  Ergodic Algorithms on Special Euclidean Groups for ATR , 1997 .