N-doped and sulfur vacancy-rich TiO2@SnS2 nanoporous arrays for the plasmonic photocatalytic H2 evolution

[1]  Jingli Shi,et al.  Advanced lithium–sulfur batteries enabled by a SnS2-Hollow carbon nanofibers Flexible Electrocatalytic Membrane , 2021 .

[2]  Long Chen,et al.  NiCo2S4 microspheres grown on N, S co-doped reduced graphene oxide as an efficient bifunctional electrocatalyst for overall water splitting in alkaline and neutral pH , 2021, Nano Research.

[3]  Lang Wang,et al.  Embedding tin disulfide nanoparticles in two-dimensional porous carbon nanosheet interlayers for fast-charging lithium-sulfur batteries , 2021, Science China Materials.

[4]  Yu Huang,et al.  In-situ fabrication SnO2/SnS2 heterostructure for boosting the photocatalytic degradation of pollutants , 2020, Chinese Journal of Catalysis.

[5]  Zhiyu Wang,et al.  Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis , 2020 .

[6]  M. Xu,et al.  Micro-scale 2D quasi-nanosheets formed by 0D nanocrystals: from single to multicomponent building blocks , 2020, Science China Materials.

[7]  Hong Chen,et al.  Direct Z-scheme photocatalytic overall water splitting on two dimensional MoSe2/SnS2 heterojunction , 2020 .

[8]  Yueping Fang,et al.  Carbon nanotube@silicon carbide coaxial heterojunction nanotubes as metal-free photocatalysts for enhanced hydrogen evolution , 2020, Chinese Journal of Catalysis.

[9]  Zhong Lin Wang,et al.  Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures , 2019, Nano Energy.

[10]  Jiujun Zhang,et al.  Sandwich-Like SnS2/Graphene/SnS2 with Expanded Interlayer Distance as High-Rate Lithium/Sodium-Ion Battery Anode Materials. , 2019, ACS nano.

[11]  Weijia Zhou,et al.  Ni-Co-N hybrid porous nanosheets on graphene paper for flexible and editable asymmetric all-solid-state supercapacitors , 2019, Nano Energy.

[12]  Ye Li,et al.  A promising visible-light photocatalyst: H2 plasma-activated amorphous-TiO2-supported Au nanoparticles , 2019, Journal of Catalysis.

[13]  L. Wan,et al.  Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode , 2019, Nano Energy.

[14]  J. Noh,et al.  Mixed-dimensional, three-level hierarchical nanostructures of silver and zinc oxide for fast photocatalytic degradation of multiple dyes , 2019, Journal of Catalysis.

[15]  J. Wu,et al.  Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect , 2019, Nano Energy.

[16]  L. Ju,et al.  Phase and Defect Engineering of MoS2 Stabilized in Periodic TiO2 Nanoporous Film for Enhanced Solar Water Splitting , 2018, Advanced Optical Materials.

[17]  Shasha Zheng,et al.  N-Doped Mesoporous ZnO with Oxygen Vacancies for Stable Hydrazine Electrocatalysis , 2018, ChemNanoMat.

[18]  Yi Xie,et al.  Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction. , 2017, Journal of the American Chemical Society.

[19]  Jitendra Panwar,et al.  Synthesis and Applications of Noble Metal Nanoparticles: A Review , 2017 .

[20]  Hyungkyu Han,et al.  Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting - superior role of 1D nanoarchitectures and of combined heterostructures. , 2017, Chemical Society reviews.

[21]  L. Gu,et al.  Significantly Increased Raman Enhancement on MoX2 (X = S, Se) Monolayers upon Phase Transition , 2017 .

[22]  Wanyi Liu,et al.  Mo2N: An efficient non-noble metal cocatalyst on CdS for enhanced photocatalytic H2 evolution under visible light irradiation , 2016 .

[23]  Le Zhou,et al.  Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO2 Plasmonic Film. , 2016, ACS applied materials & interfaces.

[24]  Junmin Wan,et al.  Ternary composites of TiO2 nanotubes with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis , 2016 .

[25]  G. Marcì,et al.  Photocatalytic formation of H2 and value-added chemicals in aqueous glucose (Pt)-TiO2 suspension , 2016 .

[26]  P. Schmuki,et al.  Pt‐Decorated g‐C3N4/TiO2 Nanotube Arrays with Enhanced Visible‐Light Photocatalytic Activity for H2 Evolution , 2016, ChemistryOpen.

[27]  Hanqing Yu,et al.  Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction , 2015, Nature Communications.

[28]  D. Milliron,et al.  Shape-Dependent Field Enhancement and Plasmon Resonance of Oxide Nanocrystals , 2015 .

[29]  M. Beller,et al.  Solar Hydrogen Production by Plasmonic Au-TiO2 Catalysts: Impact of Synthesis Protocol and TiO2 Phase on Charge Transfer Efficiency and H2 Evolution Rates , 2015 .

[30]  H. Tao,et al.  Perovskite solar cell with an efficient TiO₂ compact film. , 2014, ACS applied materials & interfaces.

[31]  Yun Wang,et al.  The size and valence state effect of Pt on photocatalytic H2 evolution over platinized TiO2 photocatalyst , 2014 .

[32]  P. Schmuki,et al.  Self-organized arrays of single-metal catalyst particles in TiO2 cavities: a highly efficient photocatalytic system. , 2013, Angewandte Chemie.

[33]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[34]  Ying Li,et al.  Ultrasonic spray pyrolysis synthesis of Ag/TiO2 nanocomposite photocatalysts for simultaneous H2 production and CO2 reduction , 2012 .

[35]  Yohann Scribano,et al.  Towards a scalable and accurate quantum approach for describing vibrations of molecule–metal interfaces , 2011, Beilstein journal of nanotechnology.

[36]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[37]  I. E. Grey,et al.  Efficiency of solar water splitting using semiconductor electrodes , 2006 .

[38]  Naomi J. Halas,et al.  Plasmon Resonance Shifts of Au-Coated Au 2 S Nanoshells: Insight into Multicomponent Nanoparticle Growth , 1997 .

[39]  Kieron Burke,et al.  The adiabatic connection method: a non-empirical hybrid , 1997 .

[40]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[41]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[42]  D. Tsai,et al.  Plasmonic photocatalysis , 2013, Reports on progress in physics. Physical Society.